找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Numerical Solution of Stochastic Differential Equations; Peter E. Kloeden,Eckhard Platen Book 1992 Springer-Verlag Berlin Heidelberg 1992

[復(fù)制鏈接]
樓主: 小費(fèi)
51#
發(fā)表于 2025-3-30 09:16:55 | 只看該作者
n Bangladesh. This chapter analyses how tourism institutions like the Ministry of Civil Aviation and Tourism (MOCAT), Bangladesh Parjatan Corporation (BPC), like Bangladesh are Bangladesh Tourism Board (BTB), Association of Travel Agents of Bangladesh (ATAB), Tour Operators Association of Bangladesh
52#
發(fā)表于 2025-3-30 16:21:51 | 只看該作者
Probability and StatisticsExercises (PC= Personal Computer), based on pseudo-random number generators introduced in Section 3, are used extensively to help the reader to develop an intuitive understanding of the material. Statistical tests are discussed briefly in the final section.
53#
發(fā)表于 2025-3-30 17:38:44 | 只看該作者
Probability Theory and Stochastic Processes now the emphasis is more mathematical. Integration and measure theory are sketched and an axiomatic approach to probability is presented. Apart form briefly perusing the chapter, the general reader could omit this chapter on the first reading.
54#
發(fā)表于 2025-3-31 00:31:45 | 只看該作者
Ito Stochastic Calculusderived. This is a stochastic counterpart of the chain rule of deterministic calculus and will be used repeatedly throughout the book. Section 1 summarizes the key concepts and results and should be read by nonspecialists. Mathematical proofs are presented in the subsequent sections.
55#
發(fā)表于 2025-3-31 02:10:44 | 只看該作者
56#
發(fā)表于 2025-3-31 08:46:37 | 只看該作者
Stochastic Taylor Expansions and allow various kinds of higher order approximations of functionals of diffusion processes to be made. These expansions are the key to the stochastic numerical analysis which we shall develop in the second half of this book. Apart from Section 1, which provides an introductory overview, this chap
57#
發(fā)表于 2025-3-31 12:29:34 | 只看該作者
Applications of Stochastic Differential Equations variety of disciplines with the aim of stimulating the readers’ interest to apply stochastic differential equations in their own particular fields of interest and of providing an indication of how others have used models described by stochastic differential equations. Here we simply describe the eq
58#
發(fā)表于 2025-3-31 14:23:26 | 只看該作者
59#
發(fā)表于 2025-3-31 20:26:12 | 只看該作者
Strong Taylor Approximationsch we shall call strong Taylor approximations. We shall mainly consider the corresponding strong Taylor schemes, and shall see that the desired order of strong convergence determines the truncation to be used. To establish the appropriate orders of various schemes we shall make frequent use of a tec
60#
發(fā)表于 2025-4-1 00:27:15 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 15:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宁德市| 长海县| 惠水县| 晴隆县| 鹿邑县| 峨眉山市| 梁平县| 长治市| 黔江区| 军事| 常州市| 弋阳县| 丽江市| 涞水县| 滨州市| 南溪县| 彝良县| 子洲县| 海原县| 怀安县| 武山县| 光泽县| 武平县| 青阳县| 高阳县| 波密县| 拉萨市| 阳春市| 老河口市| 织金县| 临沂市| 铜陵市| 玉树县| 临高县| 上蔡县| 且末县| 商河县| 腾冲县| 长海县| 治县。| 海原县|