找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Numerical Semigroups and Applications; Abdallah Assi,Marco D‘Anna,Pedro A. García-Sánchez Book 2020Latest edition Springer Nature Switzerl

[復(fù)制鏈接]
查看: 54301|回復(fù): 37
樓主
發(fā)表于 2025-3-21 16:25:04 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Numerical Semigroups and Applications
編輯Abdallah Assi,Marco D‘Anna,Pedro A. García-Sánchez
視頻videohttp://file.papertrans.cn/670/669170/669170.mp4
概述Addressed to undergraduate students, and to reasearchers who want to see the state of art in numerical semigroups research.Contains many examples and tutorials with the (free) numericalsgps GAP packag
叢書名稱RSME Springer Series
圖書封面Titlebook: Numerical Semigroups and Applications;  Abdallah Assi,Marco D‘Anna,Pedro A. García-Sánchez Book 2020Latest edition Springer Nature Switzerl
描述.This book is an extended and revised version of "Numerical Semigroups with Applications," published by Springer as part of the RSME series. Like the first edition, it presents applications of numerical semigroups in Algebraic Geometry, Number Theory and Coding Theory. It starts by discussing the basic notions related to numerical semigroups and those needed to understand semigroups associated with irreducible meromorphic series. It then derives a series of applications in curves and factorization invariants. A new chapter is included, which offers a detailed review of ideals for numerical semigroups. Based on this new chapter,?descriptions of the module of K?hler differentials for an algebroid curve and for a polynomial curve are provided. Moreover, the concept of tame degree has been included, and is viewed in relation to other factorization invariants appearing in the first edition.?This content highlights new applications of numerical semigroups and their ideals, following in the spirit of the first edition..
出版日期Book 2020Latest edition
關(guān)鍵詞Numerical semigroup; Algebraic curve; AG codes; Nonunique factorization invariants; Combinatorics
版次2
doihttps://doi.org/10.1007/978-3-030-54943-5
isbn_ebook978-3-030-54943-5Series ISSN 2509-8888 Series E-ISSN 2509-8896
issn_series 2509-8888
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

書目名稱Numerical Semigroups and Applications影響因子(影響力)




書目名稱Numerical Semigroups and Applications影響因子(影響力)學(xué)科排名




書目名稱Numerical Semigroups and Applications網(wǎng)絡(luò)公開度




書目名稱Numerical Semigroups and Applications網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Numerical Semigroups and Applications被引頻次




書目名稱Numerical Semigroups and Applications被引頻次學(xué)科排名




書目名稱Numerical Semigroups and Applications年度引用




書目名稱Numerical Semigroups and Applications年度引用學(xué)科排名




書目名稱Numerical Semigroups and Applications讀者反饋




書目名稱Numerical Semigroups and Applications讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:05:35 | 只看該作者
Numerical Semigroups and Applications978-3-030-54943-5Series ISSN 2509-8888 Series E-ISSN 2509-8896
板凳
發(fā)表于 2025-3-22 00:41:54 | 只看該作者
Abdallah Assi,Marco D‘Anna,Pedro A. García-SánchezAddressed to undergraduate students, and to reasearchers who want to see the state of art in numerical semigroups research.Contains many examples and tutorials with the (free) numericalsgps GAP packag
地板
發(fā)表于 2025-3-22 06:20:49 | 只看該作者
5#
發(fā)表于 2025-3-22 12:26:47 | 只看該作者
6#
發(fā)表于 2025-3-22 13:07:32 | 只看該作者
Semigroup of an Irreducible Meromorphic Series,Let . be an algebraically closed field of characteristic zero and let . be a nonzero polynomial of . where . denotes the field of meromorphic series in ..
7#
發(fā)表于 2025-3-22 20:42:43 | 只看該作者
8#
發(fā)表于 2025-3-22 22:58:32 | 只看該作者
Factorizations and Divisibility,Let . be a numerical semigroup minimally generated by .. For ., recall that the set of factorizations of . is ., which is the set of nonnegative integer solutions to.
9#
發(fā)表于 2025-3-23 02:35:00 | 只看該作者
Irreducible Numerical Semigroups,ps was initially to express any numerical semigroup as a finite intersection of irreducible numerical semigroups, and then derive properties of the original semigroup in terms of the irreducibles that appear in this decomposition.
10#
發(fā)表于 2025-3-23 05:33:08 | 只看該作者
RSME Springer Serieshttp://image.papertrans.cn/n/image/669170.jpg
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 19:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安溪县| 辽中县| 乌兰浩特市| 玉田县| 阳原县| 精河县| 澎湖县| 阳谷县| 天柱县| 沙湾县| 阿尔山市| 洪江市| 尖扎县| 胶南市| 临邑县| 广水市| 杂多县| 织金县| 舟曲县| 西贡区| 台南市| 基隆市| 广元市| 禹城市| 孝感市| 鄄城县| 普陀区| 西青区| 额尔古纳市| 库车县| 昭觉县| 金湖县| 紫阳县| 施甸县| 秦皇岛市| 饶平县| 华宁县| 施秉县| 宜章县| 安庆市| 桐乡市|