找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Numerical Optimization with Computational Errors; Alexander J. Zaslavski Book 2016 Springer International Publishing Switzerland 2016 nonl

[復制鏈接]
樓主: hearing-aid
31#
發(fā)表于 2025-3-26 22:14:55 | 只看該作者
Continuous Subgradient Method,w that our algorithms generate a good approximate solution, if computational errors are bounded from above by a small positive constant. Moreover, for a known computational error, we find out what an approximate solution can be obtained and how much time one needs for this.
32#
發(fā)表于 2025-3-27 03:06:26 | 只看該作者
33#
發(fā)表于 2025-3-27 06:58:19 | 只看該作者
34#
發(fā)表于 2025-3-27 11:52:48 | 只看該作者
Subgradient Projection Algorithm,f convex–concave functions, under the presence of computational errors. We show that our algorithms generate a good approximate solution, if computational errors are bounded from above by a small positive constant. Moreover, for a known computational error, we find out what an approximate solution c
35#
發(fā)表于 2025-3-27 14:40:53 | 只看該作者
The Mirror Descent Algorithm,erate a good approximate solution, if computational errors are bounded from above by a small positive constant. Moreover, for a known computational error, we find out what an approximate solution can be obtained and how many iterates one needs for this.
36#
發(fā)表于 2025-3-27 19:06:56 | 只看該作者
Gradient Algorithm with a Smooth Objective Function,rs. We show that the algorithm generates a good approximate solution, if computational errors are bounded from above by a small positive constant. Moreover, for a known computational error, we find out what an approximate solution can be obtained and how many iterates one needs for this.
37#
發(fā)表于 2025-3-28 00:49:30 | 只看該作者
38#
發(fā)表于 2025-3-28 03:37:01 | 只看該作者
39#
發(fā)表于 2025-3-28 06:24:41 | 只看該作者
40#
發(fā)表于 2025-3-28 11:19:05 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 11:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
即墨市| 西林县| 峨眉山市| 诸城市| 河北省| 盘山县| 民丰县| 辽源市| 黄石市| 彰武县| 新乡县| 南开区| 灵璧县| 会同县| 阿合奇县| 安图县| 怀宁县| 林州市| 南江县| 天等县| 石渠县| 达孜县| 若羌县| 双江| 姚安县| 文山县| 田东县| 芮城县| 平山县| 五华县| 乡宁县| 白河县| 孝感市| 曲周县| 潍坊市| 会同县| 龙川县| 南溪县| 迁西县| 塘沽区| 明星|