找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Numerical Optimization with Computational Errors; Alexander J. Zaslavski Book 2016 Springer International Publishing Switzerland 2016 nonl

[復(fù)制鏈接]
樓主: hearing-aid
21#
發(fā)表于 2025-3-25 07:00:15 | 只看該作者
22#
發(fā)表于 2025-3-25 10:08:04 | 只看該作者
23#
發(fā)表于 2025-3-25 12:16:53 | 只看該作者
24#
發(fā)表于 2025-3-25 17:15:49 | 只看該作者
25#
發(fā)表于 2025-3-25 22:30:39 | 只看該作者
26#
發(fā)表于 2025-3-26 01:57:04 | 只看該作者
Proximal Point Method in Hilbert Spaces,how the convergence of proximal point methods when computational errors are summable. In this chapter the convergence of the method is established for nonsummable computational errors. We show that the proximal point method generates a good approximate solution if the sequence of computational errors is bounded from above by some constant.
27#
發(fā)表于 2025-3-26 04:35:17 | 只看該作者
28#
發(fā)表于 2025-3-26 10:36:31 | 只看該作者
Maximal Monotone Operators and the Proximal Point Algorithm,one operator, under the presence of computational errors. The convergence of the method is established for nonsummable computational errors. We show that the proximal point method generates a good approximate solution, if the sequence of computational errors is bounded from above by a constant.
29#
發(fā)表于 2025-3-26 13:46:56 | 只看該作者
The Extragradient Method for Solving Variational Inequalities,errors. The convergence of the subgradient method for solving variational inequalities is established for nonsummable computational errors. We show that the subgradient method generates a good approximate solution, if the sequence of computational errors is bounded from above by a constant.
30#
發(fā)表于 2025-3-26 18:54:12 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 14:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
蕲春县| 岗巴县| 沿河| 汤阴县| 温泉县| 乐陵市| 道孚县| 宁蒗| 迁西县| 泌阳县| 柞水县| 司法| 斗六市| 青铜峡市| 万荣县| 昌平区| 张家港市| 郸城县| 兴仁县| 九江市| 厦门市| 大兴区| 道孚县| 通河县| 子长县| 延津县| 广西| 菏泽市| 武安市| 四川省| 龙江县| 岑溪市| 大石桥市| 马尔康县| 安国市| 文水县| 濉溪县| 荣昌县| 昭苏县| 沙洋县| 通辽市|