找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Numerical Nonsmooth Optimization; State of the Art Alg Adil M. Bagirov,Manlio Gaudioso,Sona Taheri Book 2020 Springer Nature Switzerland AG

[復(fù)制鏈接]
樓主: Ensign
21#
發(fā)表于 2025-3-25 06:34:13 | 只看該作者
22#
發(fā)表于 2025-3-25 07:37:12 | 只看該作者
23#
發(fā)表于 2025-3-25 12:10:24 | 只看該作者
24#
發(fā)表于 2025-3-25 16:59:32 | 只看該作者
Bundle Methods for Nonsmooth DC Optimizationconditions are discussed and the relationship between sets of different stationary points (critical, Clarke stationary and inf-stationary) is established. Bundle methods are developed based on a nonconvex piecewise linear model of the objective function and the convergence of these methods is studie
25#
發(fā)表于 2025-3-25 21:25:15 | 只看該作者
26#
發(fā)表于 2025-3-26 02:47:20 | 只看該作者
Beyond the Oracle: Opportunities of Piecewise Differentiationoracle that evaluates at any given . the objective function value .(.) and a generalized gradient .?∈?.(.) in the sense of Clarke. We will argue here that, if there is a realistic possibility of computing a vector . that is guaranteed to be a generalized gradient, then one must know so much about th
27#
發(fā)表于 2025-3-26 05:01:34 | 只看該作者
Numerical Solution of Generalized Minimax Problemssts in the minimization of nonsmooth functions which are compositions of special smooth convex functions with maxima of smooth functions. The most important functions of this type are the sums of maxima of smooth functions. Section 11.2 is devoted to primal interior point methods which use solutions
28#
發(fā)表于 2025-3-26 11:19:57 | 只看該作者
29#
發(fā)表于 2025-3-26 15:12:14 | 只看該作者
New Multiobjective Proximal Bundle Method with Scaled Improvement Functioncase the improvement function possesses, for example the nice property that a descent direction for the improvement function improves all the objectives of the original problem. However, the numerical experiments have shown that the standard improvement function is rather sensitive for scaling. For
30#
發(fā)表于 2025-3-26 19:23:11 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 05:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乌鲁木齐县| 萨迦县| 双牌县| 乐山市| 农安县| 万年县| 彭州市| 榆社县| 吉林市| 韶关市| 临西县| 汾西县| 曲沃县| 云和县| 北票市| 桂阳县| 岳西县| 阿坝县| 哈密市| 阳春市| 南雄市| 伊宁市| 和林格尔县| 呼伦贝尔市| 靖西县| 天柱县| 梁山县| 界首市| 长武县| 克山县| 广安市| 汝州市| 博客| 会昌县| 丰宁| 舒城县| 邹平县| 象州县| 洪湖市| 黎平县| 镇巴县|