找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Numerical Methods of Approximation Theory, Vol. 7 / Numerische Methoden der Approximationstheorie, B; Workshop on Numerica L. Collatz,G. Me

[復(fù)制鏈接]
樓主: 卑賤
21#
發(fā)表于 2025-3-25 07:14:41 | 只看該作者
Einige Bemerkungen zur Numerik der multivariaten Approximation,e for boundary value problems). Nonlinear problems become more and more important for applications, and it would be desirable to make more research in this area for which a list of open problems is given.
22#
發(fā)表于 2025-3-25 08:20:55 | 只看該作者
Numerical Aplications of Operator Pade Approximants,ompletely following the ideas of the univariate theory. These operator Padé approximants prove to be efficient tools for the convergence acceleration of multidimensional tables (q=1), for the solution of a system of nonlinear equations (p=q), for the numerical approximation of multivariate functions
23#
發(fā)表于 2025-3-25 12:37:21 | 只看該作者
Real vs. Complex Rational Chebyshev Approximation on Complex Domains,on f satisfying . by a rational function of type (m,n) with either real or complex coefficients. For m = 0 and n ≥ 4, the error in complex approximation can be arbitrarily much smaller than the error in real approximation. In contrast, for (m,n) = (0,1) the complex error can be better by at most a c
24#
發(fā)表于 2025-3-25 16:28:56 | 只看該作者
Interpolation and Instant Approximation,tle effort: Main principle FFE (Few Function Evaluations). The remainder estimate based on one degree of approximation will be refined by introducing several such degrees (in combination with estimates for Chebyshev coefficients). Next we investigate the question whether the interpolation polynomial
25#
發(fā)表于 2025-3-25 22:59:57 | 只看該作者
26#
發(fā)表于 2025-3-26 02:15:47 | 只看該作者
Euler-Frobenius-Polynome,path for the Euler-Frobenius polynomials. These polynomials are well known from the theory of attenuation factors in numerical Fourier analysis. It is shown that the contour integral approach to the Euler-Frobenius polynomials allows to deduce in a simple way all their fundamental properties.
27#
發(fā)表于 2025-3-26 07:13:29 | 只看該作者
28#
發(fā)表于 2025-3-26 10:30:07 | 只看該作者
29#
發(fā)表于 2025-3-26 14:03:52 | 只看該作者
板凳
30#
發(fā)表于 2025-3-26 20:05:35 | 只看該作者
第4樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 06:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
进贤县| 花莲县| 武宁县| 奉新县| 龙胜| 天台县| 临澧县| 枣阳市| 温州市| 长汀县| 平阳县| 澎湖县| 永胜县| 车致| 平安县| 宜丰县| 班玛县| 旺苍县| 南平市| 襄垣县| 灌阳县| 兴安盟| 德庆县| 河北区| 讷河市| 沙坪坝区| 台安县| 东源县| 华坪县| 河曲县| 中牟县| 南部县| 和静县| 务川| 富阳市| 玉环县| 偃师市| 新乡市| 静乐县| 贡觉县| 文昌市|