找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Numerical Methods for Stochastic Control Problems in Continuous Time; Harold J. Kushner,Paul G. Dupuis Book 19921st edition Springer-Verla

[復(fù)制鏈接]
樓主: 請回避
31#
發(fā)表于 2025-3-26 21:07:31 | 只看該作者
32#
發(fā)表于 2025-3-27 01:54:54 | 只看該作者
The Viscosity Solution Approach to Proving Convergence of Numerical Schemes,imal control problems. The approach to proving the convergence has been based on demonstrating the convergence of a sequence of controlled Markov chains to a controlled process (diffusion, jump diffusion, etc.) appropriate to the given stochastic or deterministic optimal control problem.
33#
發(fā)表于 2025-3-27 08:17:59 | 只看該作者
Springer-Verlag New York, Inc. 1992
34#
發(fā)表于 2025-3-27 09:52:24 | 只看該作者
35#
發(fā)表于 2025-3-27 16:53:57 | 只看該作者
Stochastic Modelling and Applied Probabilityhttp://image.papertrans.cn/n/image/669094.jpg
36#
發(fā)表于 2025-3-27 17:58:18 | 只看該作者
https://doi.org/10.1007/978-1-4684-0441-8Markov chain; Variation; algorithms; numerical analysis; stochastic processes
37#
發(fā)表于 2025-3-27 23:34:25 | 只看該作者
38#
發(fā)表于 2025-3-28 05:58:32 | 只看該作者
Problems from the Calculus of Variations,A large class of deterministic optimal control problems are special cases of the stochastic optimal control problems considered previously. This is true both with respect to the construction of schemes as well as the proofs of convergence. In fact, the convergence proofs become much simpler in the deterministic setting.
39#
發(fā)表于 2025-3-28 09:53:23 | 只看該作者
40#
發(fā)表于 2025-3-28 12:44:01 | 只看該作者
Controlled Markov Chains,ase, where there is no control or where the control is fixed, is dealt with in Section 2.1, and the recursive equations satisfied by the cost functionals are obtained. A similar method is used to get the recursive equations for the optimal value functions for the controlled problems. The optimal sto
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 01:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
武安市| 韶关市| 康保县| 梓潼县| 旬阳县| 齐齐哈尔市| 长子县| 溧水县| 扬州市| 岱山县| 镇康县| 岳普湖县| 麻城市| 台山市| 肃南| 新河县| 怀来县| 阜新市| 崇礼县| 石屏县| 叶城县| 剑河县| 汉川市| 水富县| 清涧县| 布拖县| 九江市| 古蔺县| 大石桥市| 康乐县| 台中市| 信阳市| 澳门| 灵寿县| 平邑县| 蕉岭县| 克东县| 化州市| 永宁县| 新龙县| 南靖县|