找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Numerical Methods for Stochastic Control Problems in Continuous Time; Harold J. Kushner,Paul G. Dupuis Book 19921st edition Springer-Verla

[復(fù)制鏈接]
樓主: 請回避
31#
發(fā)表于 2025-3-26 21:07:31 | 只看該作者
32#
發(fā)表于 2025-3-27 01:54:54 | 只看該作者
The Viscosity Solution Approach to Proving Convergence of Numerical Schemes,imal control problems. The approach to proving the convergence has been based on demonstrating the convergence of a sequence of controlled Markov chains to a controlled process (diffusion, jump diffusion, etc.) appropriate to the given stochastic or deterministic optimal control problem.
33#
發(fā)表于 2025-3-27 08:17:59 | 只看該作者
Springer-Verlag New York, Inc. 1992
34#
發(fā)表于 2025-3-27 09:52:24 | 只看該作者
35#
發(fā)表于 2025-3-27 16:53:57 | 只看該作者
Stochastic Modelling and Applied Probabilityhttp://image.papertrans.cn/n/image/669094.jpg
36#
發(fā)表于 2025-3-27 17:58:18 | 只看該作者
https://doi.org/10.1007/978-1-4684-0441-8Markov chain; Variation; algorithms; numerical analysis; stochastic processes
37#
發(fā)表于 2025-3-27 23:34:25 | 只看該作者
38#
發(fā)表于 2025-3-28 05:58:32 | 只看該作者
Problems from the Calculus of Variations,A large class of deterministic optimal control problems are special cases of the stochastic optimal control problems considered previously. This is true both with respect to the construction of schemes as well as the proofs of convergence. In fact, the convergence proofs become much simpler in the deterministic setting.
39#
發(fā)表于 2025-3-28 09:53:23 | 只看該作者
40#
發(fā)表于 2025-3-28 12:44:01 | 只看該作者
Controlled Markov Chains,ase, where there is no control or where the control is fixed, is dealt with in Section 2.1, and the recursive equations satisfied by the cost functionals are obtained. A similar method is used to get the recursive equations for the optimal value functions for the controlled problems. The optimal sto
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 01:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
全椒县| 西安市| 东兰县| 星子县| 通江县| 蓝田县| 宽城| 运城市| 丽江市| 西和县| 冀州市| 景德镇市| 浏阳市| 澄城县| 克拉玛依市| 大石桥市| 汕头市| 江安县| 石屏县| 罗江县| 麻城市| 西华县| 萍乡市| 略阳县| 封开县| 新干县| 波密县| 上虞市| 周至县| 稷山县| 新乡县| 阿尔山市| 古交市| 白玉县| 英吉沙县| 义乌市| 龙岩市| 泸西县| 内江市| 内乡县| 天台县|