找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Numerical Methods for Partial Differential Equations; Proceedings of a Con You-Ian Zhu,Ben-yu Guo Conference proceedings 1987 Springer-Verl

[復(fù)制鏈接]
樓主: CHORD
21#
發(fā)表于 2025-3-25 05:57:28 | 只看該作者
22#
發(fā)表于 2025-3-25 07:29:53 | 只看該作者
Folds of degree 4 and swallowtail catastrophe,In this paper we consider the computation for the folds of degree 4 which corresponds to the swallowtail catastrophe. A regular extended system for the swallowtail catastrophe is proposed. Finally the numerical results in the tubular nonadiabatic reaction problem are given.
23#
發(fā)表于 2025-3-25 12:12:39 | 只看該作者
24#
發(fā)表于 2025-3-25 19:41:34 | 只看該作者
25#
發(fā)表于 2025-3-25 21:09:25 | 只看該作者
26#
發(fā)表于 2025-3-26 04:04:15 | 只看該作者
Lung-an Yingeful to the editors of the series, Marcel den Dikken, Joan Maling, Liliane Haegeman to have offeredus this platform to initiate the debate about Kwa. We will also like to thank Helen van der Stelt and Jolanda Voogd from Springer for their kind collaboration and patience. We are also very grateful to
27#
發(fā)表于 2025-3-26 04:42:32 | 只看該作者
Ben-ren Zhu,Mao-yuan Jineful to the editors of the series, Marcel den Dikken, Joan Maling, Liliane Haegeman to have offeredus this platform to initiate the debate about Kwa. We will also like to thank Helen van der Stelt and Jolanda Voogd from Springer for their kind collaboration and patience. We are also very grateful to
28#
發(fā)表于 2025-3-26 10:51:38 | 只看該作者
The symplectic methods for the computation of hamiltonian equations,ral concepts for linear and nonlinear canonical systems in finite dimensions. The analysis confirms the expectation for them to behave more satisfactorily, especially in the desirable conservation properties, than the conventional schemes. We outline a general and constructive theory of generating f
29#
發(fā)表于 2025-3-26 13:52:08 | 只看該作者
30#
發(fā)表于 2025-3-26 18:01:41 | 只看該作者
A hamiltonian approximation for nonlinear wave equations on N-dimensional spheres Sn,
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 22:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
威海市| 凭祥市| 福泉市| 桃江县| 景谷| 邯郸县| 上栗县| 咸宁市| 湘潭县| 博爱县| 奉贤区| 阿拉善盟| 安塞县| 封开县| 嘉善县| 五峰| 漯河市| 商南县| 彰武县| 高清| 灌南县| 扎鲁特旗| 威宁| 上虞市| 东乌| 喀什市| 共和县| 顺义区| 钟山县| 洪洞县| 崇阳县| 元朗区| 望城县| 新丰县| 那坡县| 莎车县| 无极县| 香格里拉县| 九龙坡区| 高青县| 丹棱县|