找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Numerical Methods for Ordinary Differential Equations; Proceedings of the W Alfredo Bellen,Charles W. Gear,Elvira Russo Conference proceedi

[復(fù)制鏈接]
查看: 18234|回復(fù): 41
樓主
發(fā)表于 2025-3-21 18:38:30 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Numerical Methods for Ordinary Differential Equations
副標(biāo)題Proceedings of the W
編輯Alfredo Bellen,Charles W. Gear,Elvira Russo
視頻videohttp://file.papertrans.cn/670/669083/669083.mp4
叢書名稱Lecture Notes in Mathematics
圖書封面Titlebook: Numerical Methods for Ordinary Differential Equations; Proceedings of the W Alfredo Bellen,Charles W. Gear,Elvira Russo Conference proceedi
出版日期Conference proceedings 1989
關(guān)鍵詞difference equation; differential equation; integral; iteration; numerical method; ordinary differential
版次1
doihttps://doi.org/10.1007/BFb0089227
isbn_softcover978-3-540-51478-7
isbn_ebook978-3-540-48144-7Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightSpringer-Verlag Berlin Heidelberg 1989
The information of publication is updating

書目名稱Numerical Methods for Ordinary Differential Equations影響因子(影響力)




書目名稱Numerical Methods for Ordinary Differential Equations影響因子(影響力)學(xué)科排名




書目名稱Numerical Methods for Ordinary Differential Equations網(wǎng)絡(luò)公開度




書目名稱Numerical Methods for Ordinary Differential Equations網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Numerical Methods for Ordinary Differential Equations被引頻次




書目名稱Numerical Methods for Ordinary Differential Equations被引頻次學(xué)科排名




書目名稱Numerical Methods for Ordinary Differential Equations年度引用




書目名稱Numerical Methods for Ordinary Differential Equations年度引用學(xué)科排名




書目名稱Numerical Methods for Ordinary Differential Equations讀者反饋




書目名稱Numerical Methods for Ordinary Differential Equations讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:36:46 | 只看該作者
C. W. Gearxhibit high or unusual electrical conductivities..By classifying and comprehensively reviewing the structural data available, we hope to provide a firmer basis for improving the understanding of the relation between the physical properties and the structural features of these compounds.
板凳
發(fā)表于 2025-3-22 03:44:03 | 只看該作者
1 by Richtmyer. This method can be described in a simple way as the deterministic version of a Monte Carlo method in the sense that the random samples in the Monte Carlo method are replaced by well-selected deterministic points.
地板
發(fā)表于 2025-3-22 06:02:23 | 只看該作者
Stability in linear abstract differential equations,
5#
發(fā)表于 2025-3-22 12:08:28 | 只看該作者
Parallelism across the steps for difference and differential equations,
6#
發(fā)表于 2025-3-22 14:52:18 | 只看該作者
7#
發(fā)表于 2025-3-22 20:58:03 | 只看該作者
8#
發(fā)表于 2025-3-22 23:43:20 | 只看該作者
9#
發(fā)表于 2025-3-23 01:42:17 | 只看該作者
L. F. Shampine problem is a Blaschke product, namely z z. )mi n u(z) = all = l~ (2) J ( Z+ Zj where [o] = 1, and the zj‘s are the given zeros with given multiplicities mj. Here the necessary and sufficient condition for existence of such u(z) is that zp :f: - Zq for 1~ ]1, q~ n.978-3-0348-5471-9978-3-0348-5469-6Series ISSN 0255-0156 Series E-ISSN 2296-4878
10#
發(fā)表于 2025-3-23 09:01:15 | 只看該作者
A comparative study of Chebyshev acceleration and residue smoothing in the solution of nonlinear elt of the iteration process. Another feature of residue smoothing is that it is directly applicable to nonlinear problems without affecting the algorithmic complexity. Moreover, the simplicity of the method offers excellent prospects for execution on vector and parallel computers.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 04:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
怀安县| 长阳| 兴安县| 武鸣县| 大港区| 高邑县| 磴口县| 阿坝| 岢岚县| 龙游县| 辽宁省| 湖南省| 湄潭县| 会东县| 普安县| 阿城市| 合水县| 江孜县| 扬州市| 滨州市| 肇东市| 马尔康县| 苏尼特左旗| 特克斯县| 宁陕县| 滁州市| 施秉县| 仁寿县| 尉犁县| 萍乡市| 于都县| 嘉兴市| 临桂县| 石棉县| 邵武市| 德兴市| 汉沽区| 万宁市| 巍山| 汉阴县| 青岛市|