找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Numerical Methods for Ordinary Differential Equations; Proceedings of the W Alfredo Bellen,Charles W. Gear,Elvira Russo Conference proceedi

[復(fù)制鏈接]
查看: 18234|回復(fù): 41
樓主
發(fā)表于 2025-3-21 18:38:30 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Numerical Methods for Ordinary Differential Equations
副標(biāo)題Proceedings of the W
編輯Alfredo Bellen,Charles W. Gear,Elvira Russo
視頻videohttp://file.papertrans.cn/670/669083/669083.mp4
叢書名稱Lecture Notes in Mathematics
圖書封面Titlebook: Numerical Methods for Ordinary Differential Equations; Proceedings of the W Alfredo Bellen,Charles W. Gear,Elvira Russo Conference proceedi
出版日期Conference proceedings 1989
關(guān)鍵詞difference equation; differential equation; integral; iteration; numerical method; ordinary differential
版次1
doihttps://doi.org/10.1007/BFb0089227
isbn_softcover978-3-540-51478-7
isbn_ebook978-3-540-48144-7Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightSpringer-Verlag Berlin Heidelberg 1989
The information of publication is updating

書目名稱Numerical Methods for Ordinary Differential Equations影響因子(影響力)




書目名稱Numerical Methods for Ordinary Differential Equations影響因子(影響力)學(xué)科排名




書目名稱Numerical Methods for Ordinary Differential Equations網(wǎng)絡(luò)公開度




書目名稱Numerical Methods for Ordinary Differential Equations網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Numerical Methods for Ordinary Differential Equations被引頻次




書目名稱Numerical Methods for Ordinary Differential Equations被引頻次學(xué)科排名




書目名稱Numerical Methods for Ordinary Differential Equations年度引用




書目名稱Numerical Methods for Ordinary Differential Equations年度引用學(xué)科排名




書目名稱Numerical Methods for Ordinary Differential Equations讀者反饋




書目名稱Numerical Methods for Ordinary Differential Equations讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:36:46 | 只看該作者
C. W. Gearxhibit high or unusual electrical conductivities..By classifying and comprehensively reviewing the structural data available, we hope to provide a firmer basis for improving the understanding of the relation between the physical properties and the structural features of these compounds.
板凳
發(fā)表于 2025-3-22 03:44:03 | 只看該作者
1 by Richtmyer. This method can be described in a simple way as the deterministic version of a Monte Carlo method in the sense that the random samples in the Monte Carlo method are replaced by well-selected deterministic points.
地板
發(fā)表于 2025-3-22 06:02:23 | 只看該作者
Stability in linear abstract differential equations,
5#
發(fā)表于 2025-3-22 12:08:28 | 只看該作者
Parallelism across the steps for difference and differential equations,
6#
發(fā)表于 2025-3-22 14:52:18 | 只看該作者
7#
發(fā)表于 2025-3-22 20:58:03 | 只看該作者
8#
發(fā)表于 2025-3-22 23:43:20 | 只看該作者
9#
發(fā)表于 2025-3-23 01:42:17 | 只看該作者
L. F. Shampine problem is a Blaschke product, namely z z. )mi n u(z) = all = l~ (2) J ( Z+ Zj where [o] = 1, and the zj‘s are the given zeros with given multiplicities mj. Here the necessary and sufficient condition for existence of such u(z) is that zp :f: - Zq for 1~ ]1, q~ n.978-3-0348-5471-9978-3-0348-5469-6Series ISSN 0255-0156 Series E-ISSN 2296-4878
10#
發(fā)表于 2025-3-23 09:01:15 | 只看該作者
A comparative study of Chebyshev acceleration and residue smoothing in the solution of nonlinear elt of the iteration process. Another feature of residue smoothing is that it is directly applicable to nonlinear problems without affecting the algorithmic complexity. Moreover, the simplicity of the method offers excellent prospects for execution on vector and parallel computers.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 04:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
庆城县| 灌阳县| 拜城县| 绩溪县| 岫岩| 乐东| 南召县| 都兰县| 金昌市| 华容县| 南部县| 海盐县| 安溪县| 平谷区| 越西县| 庆云县| 克什克腾旗| 禹州市| 永济市| 绥江县| 海阳市| 迁西县| 石门县| 呼和浩特市| 普兰店市| 建平县| 双城市| 中西区| 夏津县| 玛曲县| 莱州市| 宁津县| 丰顺县| 铜川市| 敦化市| 财经| 伽师县| 扎囊县| 北辰区| 济宁市| 融水|