找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Numerical Methods for Grid Equations; Volume I Direct Meth Aleksandr A. Samarskii,Evgenii S. Nikolaev Book 1989 Birkh?user Verlag Basel 198

[復制鏈接]
樓主: Asphyxia
11#
發(fā)表于 2025-3-23 10:42:47 | 只看該作者
12#
發(fā)表于 2025-3-23 17:16:14 | 只看該作者
Aleksandr A. Samarskii,Evgenii S. Nikolaevc Flow).Presents examples and open problems for foliated sur.Extrinsic geometry describes properties of foliations on Riemannian manifolds which can be expressed in terms of the second fundamental form of the leaves. The authors of .Topics in Extrinsic Geometry of Codimension-One. .Foliations. achie
13#
發(fā)表于 2025-3-23 18:16:36 | 只看該作者
Aleksandr A. Samarskii,Evgenii S. Nikolaeveaves. The authors of .Topics in Extrinsic Geometry of Codimension-One. .Foliations. achieve a technical tour de force, which will lead to important geometric results.?.?The .Integral Formulae., introduced in chapter 1, is a useful for problems such as: prescribing higher mean curvatures of foliatio
14#
發(fā)表于 2025-3-24 00:47:06 | 只看該作者
eaves. The authors of .Topics in Extrinsic Geometry of Codimension-One. .Foliations. achieve a technical tour de force, which will lead to important geometric results.?.?The .Integral Formulae., introduced in chapter 1, is a useful for problems such as: prescribing higher mean curvatures of foliatio
15#
發(fā)表于 2025-3-24 05:09:25 | 只看該作者
16#
發(fā)表于 2025-3-24 07:57:07 | 只看該作者
17#
發(fā)表于 2025-3-24 12:04:00 | 只看該作者
https://doi.org/10.1007/978-3-0348-9272-8Approximation; Cauchy problem; algebra; difference equation; differential equation; linear algebra; matric
18#
發(fā)表于 2025-3-24 18:45:14 | 只看該作者
The Elimination Method,In this chapter, we study several variants of a direct method for solving grid equations — the elimination method. The application of the method to the solution of both scalar and vector equations is considered.
19#
發(fā)表于 2025-3-24 19:19:26 | 只看該作者
20#
發(fā)表于 2025-3-25 03:11:59 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 14:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
县级市| 伽师县| 开江县| 虎林市| 睢宁县| 昌图县| 柘荣县| 乐亭县| 湟源县| 库尔勒市| 南华县| 万全县| 哈巴河县| 泉州市| 霍山县| 永春县| 读书| 文化| 马关县| 陆丰市| 晋江市| 宣武区| 西城区| 宜宾县| 永安市| 郎溪县| 井冈山市| 故城县| 胶州市| 星子县| 西峡县| 青田县| 临安市| 勃利县| 奉节县| 葵青区| 来安县| 耿马| 鹤岗市| 容城县| 平邑县|