找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Numerical Methods for Grid Equations; Volume I Direct Meth Aleksandr A. Samarskii,Evgenii S. Nikolaev Book 1989 Birkh?user Verlag Basel 198

[復制鏈接]
樓主: Asphyxia
11#
發(fā)表于 2025-3-23 10:42:47 | 只看該作者
12#
發(fā)表于 2025-3-23 17:16:14 | 只看該作者
Aleksandr A. Samarskii,Evgenii S. Nikolaevc Flow).Presents examples and open problems for foliated sur.Extrinsic geometry describes properties of foliations on Riemannian manifolds which can be expressed in terms of the second fundamental form of the leaves. The authors of .Topics in Extrinsic Geometry of Codimension-One. .Foliations. achie
13#
發(fā)表于 2025-3-23 18:16:36 | 只看該作者
Aleksandr A. Samarskii,Evgenii S. Nikolaeveaves. The authors of .Topics in Extrinsic Geometry of Codimension-One. .Foliations. achieve a technical tour de force, which will lead to important geometric results.?.?The .Integral Formulae., introduced in chapter 1, is a useful for problems such as: prescribing higher mean curvatures of foliatio
14#
發(fā)表于 2025-3-24 00:47:06 | 只看該作者
eaves. The authors of .Topics in Extrinsic Geometry of Codimension-One. .Foliations. achieve a technical tour de force, which will lead to important geometric results.?.?The .Integral Formulae., introduced in chapter 1, is a useful for problems such as: prescribing higher mean curvatures of foliatio
15#
發(fā)表于 2025-3-24 05:09:25 | 只看該作者
16#
發(fā)表于 2025-3-24 07:57:07 | 只看該作者
17#
發(fā)表于 2025-3-24 12:04:00 | 只看該作者
https://doi.org/10.1007/978-3-0348-9272-8Approximation; Cauchy problem; algebra; difference equation; differential equation; linear algebra; matric
18#
發(fā)表于 2025-3-24 18:45:14 | 只看該作者
The Elimination Method,In this chapter, we study several variants of a direct method for solving grid equations — the elimination method. The application of the method to the solution of both scalar and vector equations is considered.
19#
發(fā)表于 2025-3-24 19:19:26 | 只看該作者
20#
發(fā)表于 2025-3-25 03:11:59 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 14:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
平陆县| 双流县| 贵南县| 通辽市| 广东省| 射洪县| 郎溪县| 滨州市| 葵青区| 蒲江县| 汾西县| 阿合奇县| 吴桥县| 剑阁县| 南漳县| 隆化县| 白朗县| 正定县| 宜良县| 普兰店市| 改则县| 元氏县| 洮南市| 恩平市| 宜兰县| 垦利县| 大厂| 杭州市| 腾冲县| 静宁县| 巴彦县| 喜德县| 庆阳市| 满城县| 蒙城县| 德保县| 松潘县| 同心县| 巴楚县| 从江县| 揭阳市|