找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Numerical Methods for Grid Equations; Volume I Direct Meth Aleksandr A. Samarskii,Evgenii S. Nikolaev Book 1989 Birkh?user Verlag Basel 198

[復(fù)制鏈接]
樓主: Asphyxia
11#
發(fā)表于 2025-3-23 10:42:47 | 只看該作者
12#
發(fā)表于 2025-3-23 17:16:14 | 只看該作者
Aleksandr A. Samarskii,Evgenii S. Nikolaevc Flow).Presents examples and open problems for foliated sur.Extrinsic geometry describes properties of foliations on Riemannian manifolds which can be expressed in terms of the second fundamental form of the leaves. The authors of .Topics in Extrinsic Geometry of Codimension-One. .Foliations. achie
13#
發(fā)表于 2025-3-23 18:16:36 | 只看該作者
Aleksandr A. Samarskii,Evgenii S. Nikolaeveaves. The authors of .Topics in Extrinsic Geometry of Codimension-One. .Foliations. achieve a technical tour de force, which will lead to important geometric results.?.?The .Integral Formulae., introduced in chapter 1, is a useful for problems such as: prescribing higher mean curvatures of foliatio
14#
發(fā)表于 2025-3-24 00:47:06 | 只看該作者
eaves. The authors of .Topics in Extrinsic Geometry of Codimension-One. .Foliations. achieve a technical tour de force, which will lead to important geometric results.?.?The .Integral Formulae., introduced in chapter 1, is a useful for problems such as: prescribing higher mean curvatures of foliatio
15#
發(fā)表于 2025-3-24 05:09:25 | 只看該作者
16#
發(fā)表于 2025-3-24 07:57:07 | 只看該作者
17#
發(fā)表于 2025-3-24 12:04:00 | 只看該作者
https://doi.org/10.1007/978-3-0348-9272-8Approximation; Cauchy problem; algebra; difference equation; differential equation; linear algebra; matric
18#
發(fā)表于 2025-3-24 18:45:14 | 只看該作者
The Elimination Method,In this chapter, we study several variants of a direct method for solving grid equations — the elimination method. The application of the method to the solution of both scalar and vector equations is considered.
19#
發(fā)表于 2025-3-24 19:19:26 | 只看該作者
20#
發(fā)表于 2025-3-25 03:11:59 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 23:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
平山县| 加查县| 尚志市| 镇沅| 旺苍县| 资阳市| 吴旗县| 乐山市| 章丘市| 横山县| 怀柔区| 乐业县| 闽清县| 禄劝| 长汀县| 金华市| 仙游县| 波密县| 侯马市| 泸水县| 玉环县| 壶关县| 枞阳县| 五家渠市| 雷州市| 贺兰县| 遂溪县| 垫江县| 河东区| 买车| 兴文县| 蕉岭县| 轮台县| 子长县| 宣汉县| 奉节县| 沁阳市| 和平县| 黄冈市| 清新县| 瓦房店市|