找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Numerical Methods for Free Boundary Problems; Proceedings of a Con P. Neittaanm?ki Conference proceedings 1991 Springer Basel AG 1991 finit

[復(fù)制鏈接]
樓主: Hayes
31#
發(fā)表于 2025-3-27 00:32:27 | 只看該作者
32#
發(fā)表于 2025-3-27 02:01:49 | 只看該作者
Computational stability of an initially radial solution of a growth/dissolution problem in a nonradiWe consider a free boundary problem modelling the growth/dissolution of a crystal. The aim is to investigate the following question: Does the solution to the crystal growth problem posed in two dimensions with radially symmetric initial and boundary condition evolve as a radially symmetric solution?
33#
發(fā)表于 2025-3-27 06:10:08 | 只看該作者
Shape Optimization for Multi-Phase Stefan ProblemsWe consider problems of shape optimization in which the driving actions are performed by geometry on the lateral boundary or geometry of the domain. We prove the existence of an optimal solution and discuss its approximation.
34#
發(fā)表于 2025-3-27 13:03:02 | 只看該作者
35#
發(fā)表于 2025-3-27 15:57:07 | 只看該作者
A. Bossavitdividual frame elements to model a portal frame. Coupling and uncertainty inference of the inexact constituent models are achieved using optimization, where both separate-effect and integral-effect experiments are employed to train the model form error of the constituents and coupled system.
36#
發(fā)表于 2025-3-27 19:57:53 | 只看該作者
37#
發(fā)表于 2025-3-27 23:24:11 | 只看該作者
Hans Wilhelm Alt,Irena Pawlowo increase silvicultural investment through subsidies and tax breaks. Policies are conflicting, with the needed compromises possibly leading to the abandonment of one or more objectives, possibly environmental ones, at some future time.
38#
發(fā)表于 2025-3-28 06:00:00 | 只看該作者
39#
發(fā)表于 2025-3-28 10:09:06 | 只看該作者
40#
發(fā)表于 2025-3-28 13:38:40 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 21:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
连州市| 龙江县| 肇源县| 太原市| 梅河口市| 襄垣县| 小金县| 新河县| 嵊州市| 永昌县| 桂平市| 绥德县| 丰宁| 新沂市| 武城县| 贡觉县| 乐东| 武鸣县| 竹北市| 新营市| 临漳县| 克拉玛依市| 囊谦县| 民丰县| 红安县| 宜章县| 古田县| 太仆寺旗| 三亚市| 罗源县| 彩票| 弥渡县| 廉江市| 平陆县| 祁连县| 浦县| 临海市| 苍梧县| 积石山| 东源县| 吐鲁番市|