找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Numerical Methods for Conservation Laws; Randall J. LeVeque Book 19901st edition Birkh?user Basel 1990 numerical method.research.shock wav

[復(fù)制鏈接]
樓主: 斷巖
21#
發(fā)表于 2025-3-25 03:41:43 | 只看該作者
Some Scalar Examplesvious chapter. The first of these examples (traffic flow) should also help develop some physical intuition that is applicable to the more complicated case of gas dynamics, with gas molecules taking the place of cars. This application is discussed in much more detail in Chapter 3 of Whitham[97]. The
22#
發(fā)表于 2025-3-25 09:27:42 | 只看該作者
23#
發(fā)表于 2025-3-25 13:22:38 | 只看該作者
The Riemann problem for the Euler equationst the details are messier. Instead, I will concentrate on discussing one new feature seen here, contact discontinuities, and see how we can take advantage of the linear degeneracy of one field to simplify the solution process for a general Riemann problem. Full details are available in many sources,
24#
發(fā)表于 2025-3-25 15:56:28 | 只看該作者
Godunov’s Methodbtained a natural generalization of the upwind method by diagonalizing the system, yielding the method (10.60). For nonlinear systems the matrix of eigenvectors is not constant, and this same approach does not work directly. In this chapter we will study a generalization in which the local character
25#
發(fā)表于 2025-3-25 22:16:37 | 只看該作者
26#
發(fā)表于 2025-3-26 04:07:28 | 只看該作者
27#
發(fā)表于 2025-3-26 04:47:10 | 只看該作者
Semi-discrete Methodsation process in two stages, first discretizing only in space, leaving the problem continuous in time. This leads to a system of ordinary differential equations in time, called the “semi-discrete equations”. We then discretize in time using any standard numerical method for systems of ordinary diffe
28#
發(fā)表于 2025-3-26 08:59:28 | 只看該作者
29#
發(fā)表于 2025-3-26 16:37:10 | 只看該作者
30#
發(fā)表于 2025-3-26 17:56:36 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 18:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
会东县| 务川| 班玛县| 平和县| 岳阳县| 涪陵区| 彰武县| 洪湖市| 舒兰市| 资源县| 山阴县| 太和县| 会泽县| 安阳县| 唐河县| 五莲县| 蒙山县| 韩城市| 东山县| 额尔古纳市| 梅州市| 隆化县| 广丰县| 子洲县| 奉新县| 黄大仙区| 灵川县| 寿光市| 赞皇县| 南阳市| 晋中市| 贵州省| 库车县| 永宁县| 灌云县| 巩留县| 清远市| 卫辉市| 循化| 望城县| 中江县|