找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Numerical Methods for Conservation Laws; Randall J. LeVeque Textbook 1992Latest edition Springer Basel AG 1992 CFL condition.average.compa

[復(fù)制鏈接]
樓主: PLY
11#
發(fā)表于 2025-3-23 10:32:00 | 只看該作者
12#
發(fā)表于 2025-3-23 16:25:32 | 只看該作者
13#
發(fā)表于 2025-3-23 20:11:05 | 只看該作者
IntroductionThese notes concern the solution of hyperbolic systems of conservation laws. These are time-dependent systems of partial differential equations (usually nonlinear) with a particularly simple structure.
14#
發(fā)表于 2025-3-23 22:17:46 | 只看該作者
Scalar Conservation LawsWe begin our study of conservation laws by considering the scalar case. Many of the difficulties encountered with systems of equations are already encountered here, and a good understanding of the scalar equation is required before proceeding.
15#
發(fā)表于 2025-3-24 03:50:30 | 只看該作者
16#
發(fā)表于 2025-3-24 08:38:49 | 只看該作者
Rarefaction Waves and Integral CurvesAll of the Riemann solutions considered so far have the following property: the solution is constant along all rays of the form . = ξ.. Consequently, the solution is a function of ./. alone, and is said to be a “similarity solution” of the PDE.
17#
發(fā)表于 2025-3-24 12:27:24 | 只看該作者
Numerical Methods for Linear EquationsBefore studying numerical methods for nonlinear conservation laws, we review some of the basic theory of numerical methods for the linear advection equation and linear hyperbolic systems. The emphasis will be on concepts that carry over to the nonlinear case.
18#
發(fā)表于 2025-3-24 15:58:34 | 只看該作者
19#
發(fā)表于 2025-3-24 22:29:22 | 只看該作者
20#
發(fā)表于 2025-3-24 23:28:46 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-26 02:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
陆河县| 巴彦县| 宜宾市| 宝山区| 晋州市| 大宁县| 镇沅| 蓬溪县| 黑龙江省| 无棣县| 平泉县| 且末县| 镇安县| 汉阴县| 固始县| 乐都县| 海兴县| 云安县| 米脂县| 黑水县| 淮滨县| 惠安县| 阿克陶县| 平凉市| 吴川市| 怀来县| 吉木乃县| 云霄县| 毕节市| 关岭| 新化县| 北川| 达拉特旗| 精河县| 灵宝市| 黑水县| 应城市| 沅陵县| 扶余县| 汕头市| 沙湾县|