找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Numerical Methods for Conservation Laws; Randall J. LeVeque Textbook 1992Latest edition Springer Basel AG 1992 CFL condition.average.compa

[復(fù)制鏈接]
樓主: PLY
11#
發(fā)表于 2025-3-23 10:32:00 | 只看該作者
12#
發(fā)表于 2025-3-23 16:25:32 | 只看該作者
13#
發(fā)表于 2025-3-23 20:11:05 | 只看該作者
IntroductionThese notes concern the solution of hyperbolic systems of conservation laws. These are time-dependent systems of partial differential equations (usually nonlinear) with a particularly simple structure.
14#
發(fā)表于 2025-3-23 22:17:46 | 只看該作者
Scalar Conservation LawsWe begin our study of conservation laws by considering the scalar case. Many of the difficulties encountered with systems of equations are already encountered here, and a good understanding of the scalar equation is required before proceeding.
15#
發(fā)表于 2025-3-24 03:50:30 | 只看該作者
16#
發(fā)表于 2025-3-24 08:38:49 | 只看該作者
Rarefaction Waves and Integral CurvesAll of the Riemann solutions considered so far have the following property: the solution is constant along all rays of the form . = ξ.. Consequently, the solution is a function of ./. alone, and is said to be a “similarity solution” of the PDE.
17#
發(fā)表于 2025-3-24 12:27:24 | 只看該作者
Numerical Methods for Linear EquationsBefore studying numerical methods for nonlinear conservation laws, we review some of the basic theory of numerical methods for the linear advection equation and linear hyperbolic systems. The emphasis will be on concepts that carry over to the nonlinear case.
18#
發(fā)表于 2025-3-24 15:58:34 | 只看該作者
19#
發(fā)表于 2025-3-24 22:29:22 | 只看該作者
20#
發(fā)表于 2025-3-24 23:28:46 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-26 02:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
兴化市| 邳州市| 和田市| 鹤峰县| 疏附县| 六枝特区| 南雄市| 凤凰县| 洞口县| 孟津县| 苍南县| 藁城市| 罗源县| 永和县| 博爱县| 通州区| 德钦县| 西平县| 镇沅| 靖边县| 淅川县| 米脂县| 平顺县| 云阳县| 五常市| 大冶市| 甘孜县| 托克托县| 阳春市| 桃园市| 安丘市| 谢通门县| 兴山县| 双桥区| 湘西| 五常市| 长岭县| 汝阳县| 仪征市| 莲花县| 萝北县|