找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Numerical Methods and Applications; 6th International Co Todor Boyanov,Stefka Dimova,Geno Nikolov Conference proceedings 2007 Springer-Verl

[復(fù)制鏈接]
查看: 41391|回復(fù): 62
樓主
發(fā)表于 2025-3-21 18:31:27 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Numerical Methods and Applications
副標(biāo)題6th International Co
編輯Todor Boyanov,Stefka Dimova,Geno Nikolov
視頻videohttp://file.papertrans.cn/670/669042/669042.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Numerical Methods and Applications; 6th International Co Todor Boyanov,Stefka Dimova,Geno Nikolov Conference proceedings 2007 Springer-Verl
出版日期Conference proceedings 2007
關(guān)鍵詞3D; Variable; algorithms; computational engineering; computational mathematics; computational mechanics; d
版次1
doihttps://doi.org/10.1007/978-3-540-70942-8
isbn_softcover978-3-540-70940-4
isbn_ebook978-3-540-70942-8Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer-Verlag Berlin Heidelberg 2007
The information of publication is updating

書目名稱Numerical Methods and Applications影響因子(影響力)




書目名稱Numerical Methods and Applications影響因子(影響力)學(xué)科排名




書目名稱Numerical Methods and Applications網(wǎng)絡(luò)公開度




書目名稱Numerical Methods and Applications網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Numerical Methods and Applications被引頻次




書目名稱Numerical Methods and Applications被引頻次學(xué)科排名




書目名稱Numerical Methods and Applications年度引用




書目名稱Numerical Methods and Applications年度引用學(xué)科排名




書目名稱Numerical Methods and Applications讀者反饋




書目名稱Numerical Methods and Applications讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:14:18 | 只看該作者
Abdallah Bradji,Raphaèle Herbinand Amster- dam; when we became aware of each other‘s ideas we decided to join forces. The choice of a place for the Institute, in Turkey, appealed much to us all, and it was then quickly decided that Qe§me would be an excellent spot. When the preparations for the Institute started, early in 1987, w
板凳
發(fā)表于 2025-3-22 02:30:06 | 只看該作者
地板
發(fā)表于 2025-3-22 07:03:47 | 只看該作者
Zahari Zlatevand Amster- dam; when we became aware of each other‘s ideas we decided to join forces. The choice of a place for the Institute, in Turkey, appealed much to us all, and it was then quickly decided that Qe§me would be an excellent spot. When the preparations for the Institute started, early in 1987, w
5#
發(fā)表于 2025-3-22 10:23:43 | 只看該作者
6#
發(fā)表于 2025-3-22 14:36:34 | 只看該作者
7#
發(fā)表于 2025-3-22 20:37:27 | 只看該作者
8#
發(fā)表于 2025-3-22 21:42:15 | 只看該作者
Ivan T. Dimov,Emanouil Atanassov devoted to the theory of Toeplitz and model operators. These subjects are considered here from various points of view. Several papers concern the relationships of Toeplitz operators to weighted polynomial approximation. Namely, two papers by B. Solomyak and A. Volberg intensively treat the problem
9#
發(fā)表于 2025-3-23 05:12:43 | 只看該作者
On the Discretization of the Coupled Heat and Electrical Diffusion Problemsblem. The ohmic losses which appear as a source term in the heat diffusion equation yield a nonlinear term which lies in ... A finite volume scheme is proposed for the discretization of the system; we show that the approximate solution obtained with the scheme converges, up to a subsequence, to a so
10#
發(fā)表于 2025-3-23 08:17:24 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 22:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
固始县| 宁河县| 雅江县| 应城市| 华池县| 西林县| 昌图县| 宝应县| 枣庄市| 广州市| 共和县| 天柱县| 西乡县| 大兴区| 昭通市| 罗定市| 封丘县| 上虞市| 通州区| 阆中市| 西丰县| 水富县| 邢台县| 新津县| 九江县| 西宁市| 武夷山市| 明水县| 桐城市| 武威市| 永泰县| 昌吉市| 庆城县| 江川县| 富川| 庆元县| 封丘县| 奉新县| 寿宁县| 明水县| 克拉玛依市|