找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Numerical Mathematics and Advanced Applications ENUMATH 2019; European Conference, Fred J. Vermolen,Cornelis Vuik Conference proceedings 20

[復(fù)制鏈接]
樓主: Daguerreotype
41#
發(fā)表于 2025-3-28 16:42:35 | 只看該作者
High Order Whitney Forms on Simplices and the Question of Potentials,unctions with assigned gradient, curl or divergence in domains with general topology. Three ingredients, that bear the name of their scientific fathers, are involved: the de Rham’s diagram and theorem, Hodge’s decomposition for vectors, Whitney’s differential forms. Some key images are presented in
42#
發(fā)表于 2025-3-28 19:17:44 | 只看該作者
43#
發(fā)表于 2025-3-29 02:16:53 | 只看該作者
44#
發(fā)表于 2025-3-29 03:56:55 | 只看該作者
45#
發(fā)表于 2025-3-29 11:08:08 | 只看該作者
46#
發(fā)表于 2025-3-29 11:53:33 | 只看該作者
47#
發(fā)表于 2025-3-29 19:34:09 | 只看該作者
Model Order Reduction Framework for Problems with Moving Discontinuities,l equations. The main ingredient is a novel decomposition of the solution into a function that tracks the evolving discontinuity and a residual part that is devoid of shock features. This decomposition ansatz is then combined with Proper Orthogonal Decomposition applied to the residual part only to
48#
發(fā)表于 2025-3-29 22:38:48 | 只看該作者
49#
發(fā)表于 2025-3-30 02:14:09 | 只看該作者
A Structure-Preserving Approximation of the Discrete Split Rotating Shallow Water Equations, of this slice model provides insight towards developing schemes for the full 2D case. Using the split Hamiltonian FE framework (Bauer et al., A structure-preserving split finite element discretization of the rotating shallow water equations in split Hamiltonian form (2019). .), we result in structu
50#
發(fā)表于 2025-3-30 05:59:10 | 只看該作者
Iterative Coupling for Fully Dynamic Poroelasticity,rove its convergence in the Banach space setting for an abstract semi-discretization in time that allows the application of the family of diagonally implicit Runge–Kutta methods. Recasting the semi-discrete solution as the minimizer of a properly defined energy functional, the proof of convergence u
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 07:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
芦山县| 会同县| 广德县| 和静县| 贺兰县| 阿城市| 海丰县| 鄂托克旗| 千阳县| 铜山县| 布尔津县| 襄汾县| 体育| 壤塘县| 仁布县| 双桥区| 东宁县| 诸暨市| 汝阳县| 铜陵市| 平武县| 商南县| 余江县| 元氏县| 济源市| 周口市| 中西区| 九寨沟县| 红原县| 丽江市| 武威市| 海安县| 泾川县| 鸡泽县| 沙雅县| 凯里市| 湖南省| 清河县| 邢台县| 谷城县| 中江县|