找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Numerical Mathematics and Advanced Applications; Proceedings of ENUMA Alfredo Bermúdez de Castro,Dolores Gómez,Pilar Sal Conference proceed

[復(fù)制鏈接]
樓主: brachytherapy
21#
發(fā)表于 2025-3-25 04:39:53 | 只看該作者
22#
發(fā)表于 2025-3-25 08:43:00 | 只看該作者
Convergence of Adaptive Wavelet Methods for Goal-Oriented Error Estimationy at possibly low computational cost measured in terms of degrees of freedom. In particular, we propose a scheme that can be shown to exhibit convergence to the target value without insisting on energy norm convergence of the primal solution. The theoretical findings are complemented by first numeri
23#
發(fā)表于 2025-3-25 14:01:53 | 只看該作者
Quadratic Programming and Scalable Algorithms for Variational Inequalities The unique feature of these algorithms is the rate of convergence in terms of bounds on the spectrum of the Hessian of the cost function. Then we combine these estimates with some results on the FETI method (FETI-DP, FETI and Total FETI) to get the convergence bounds that guarantee the scalability
24#
發(fā)表于 2025-3-25 18:30:02 | 只看該作者
25#
發(fā)表于 2025-3-25 22:38:53 | 只看該作者
26#
發(fā)表于 2025-3-26 01:13:06 | 只看該作者
27#
發(fā)表于 2025-3-26 07:32:35 | 只看該作者
28#
發(fā)表于 2025-3-26 09:27:33 | 只看該作者
29#
發(fā)表于 2025-3-26 16:04:00 | 只看該作者
Highly Accurate Conservative Finite Difference Schemes and Adaptive Mesh Refinement Techniques for Htions of complex flows [3, 6]. This scheme is based on Shu and Osher’s technique [9] for the design of highly accurate finite difference schemes obtained by flux reconstruction procedures (ENO, WENO) on Cartesian meshes and Donat-Marquina’s flux splitting [4]. We then motivate the need for mesh adap
30#
發(fā)表于 2025-3-26 18:53:26 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 03:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
临潭县| 沾益县| 盱眙县| 北宁市| 万源市| 宕昌县| 柞水县| 维西| 新源县| 岑巩县| 西充县| 莒南县| 五大连池市| 巴楚县| 大英县| 宜兴市| 荆门市| 乌兰浩特市| 共和县| 漳平市| 合水县| 红河县| 仙游县| 长顺县| 贺兰县| 迁安市| 青岛市| 惠州市| 中西区| 高阳县| 淮阳县| 昭平县| 堆龙德庆县| 黄浦区| 长岭县| 磴口县| 大连市| 湘潭市| 夏河县| 常州市| 外汇|