找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Numerical Mathematics and Advanced Applications; Proceedings of ENUMA Alfredo Bermúdez de Castro,Dolores Gómez,Pilar Sal Conference proceed

[復(fù)制鏈接]
樓主: brachytherapy
21#
發(fā)表于 2025-3-25 04:39:53 | 只看該作者
22#
發(fā)表于 2025-3-25 08:43:00 | 只看該作者
Convergence of Adaptive Wavelet Methods for Goal-Oriented Error Estimationy at possibly low computational cost measured in terms of degrees of freedom. In particular, we propose a scheme that can be shown to exhibit convergence to the target value without insisting on energy norm convergence of the primal solution. The theoretical findings are complemented by first numeri
23#
發(fā)表于 2025-3-25 14:01:53 | 只看該作者
Quadratic Programming and Scalable Algorithms for Variational Inequalities The unique feature of these algorithms is the rate of convergence in terms of bounds on the spectrum of the Hessian of the cost function. Then we combine these estimates with some results on the FETI method (FETI-DP, FETI and Total FETI) to get the convergence bounds that guarantee the scalability
24#
發(fā)表于 2025-3-25 18:30:02 | 只看該作者
25#
發(fā)表于 2025-3-25 22:38:53 | 只看該作者
26#
發(fā)表于 2025-3-26 01:13:06 | 只看該作者
27#
發(fā)表于 2025-3-26 07:32:35 | 只看該作者
28#
發(fā)表于 2025-3-26 09:27:33 | 只看該作者
29#
發(fā)表于 2025-3-26 16:04:00 | 只看該作者
Highly Accurate Conservative Finite Difference Schemes and Adaptive Mesh Refinement Techniques for Htions of complex flows [3, 6]. This scheme is based on Shu and Osher’s technique [9] for the design of highly accurate finite difference schemes obtained by flux reconstruction procedures (ENO, WENO) on Cartesian meshes and Donat-Marquina’s flux splitting [4]. We then motivate the need for mesh adap
30#
發(fā)表于 2025-3-26 18:53:26 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 03:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
丹阳市| 宜兴市| 文安县| 临泉县| 治县。| 洮南市| 嘉义县| 吉木萨尔县| 昂仁县| 巩留县| 花垣县| 乾安县| 泉州市| 陇南市| 南开区| 万年县| 哈密市| 嘉祥县| 永平县| 岫岩| 辉南县| 德阳市| 天峨县| 怀仁县| 闽侯县| 汉源县| 临城县| 泰兴市| 高阳县| 阿瓦提县| 综艺| 砚山县| 滦平县| 甘泉县| 平山县| 虎林市| 诏安县| 阳山县| 灵寿县| 渝北区| 吴堡县|