找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Numerical Mathematics and Advanced Applications; Proceedings of ENUMA Miloslav Feistauer,Vít Dolej?í,Karel Najzar Conference proceedings 20

[復(fù)制鏈接]
樓主: 手套
31#
發(fā)表于 2025-3-26 22:30:46 | 只看該作者
An Alternative to the Least-Squares Mixed Finite Element Method for Elliptic Problemsst Squares Mixed Finite Element bilinear form. Also, it shows that the coupling between .. (.) and .(div; .) is weak enough to be neglected. This results in an alternative way to compute approximations of both the scalar variable and its gradient for second order elliptic problems.
32#
發(fā)表于 2025-3-27 03:30:30 | 只看該作者
33#
發(fā)表于 2025-3-27 08:10:03 | 只看該作者
http://image.papertrans.cn/n/image/669026.jpg
34#
發(fā)表于 2025-3-27 11:03:38 | 只看該作者
https://doi.org/10.1007/978-3-642-18775-9Quasi-Newton method; algorithms; computational fluid dynamics; computational mathematics; computational
35#
發(fā)表于 2025-3-27 15:23:10 | 只看該作者
978-3-642-62288-5Springer-Verlag Berlin Heidelberg 2004
36#
發(fā)表于 2025-3-27 17:49:47 | 只看該作者
37#
發(fā)表于 2025-3-28 01:44:28 | 只看該作者
Conference proceedings 20041st editioncations, held in Prague, Czech Republic, from 18 August to 22 August, 2003. The importance of numerical and computational mathematics and sci- entific computing is permanently growing. There is an increasing number of different research areas, where numerical simulation is necessary. Let us men- tio
38#
發(fā)表于 2025-3-28 03:59:05 | 只看該作者
39#
發(fā)表于 2025-3-28 07:55:40 | 只看該作者
40#
發(fā)表于 2025-3-28 12:12:21 | 只看該作者
Variants of Relaxation Schemes and the Lattice Boltzmann Model Relaxation Systemsion schemes. We present two variants of the relaxation schemes characterized by local approximation of characteristic speeds and a multidimensional flux approximation. These are applied to relaxation systems. Their performance will be discussed with reference to test cases of isothermal incompressible flow.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 13:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
五寨县| 巫溪县| 阳朔县| 武隆县| 蓬溪县| 长寿区| 兴山县| 汾西县| 成武县| 从江县| 武汉市| 延安市| 姚安县| 双峰县| 鲁山县| 白河县| 雷山县| 东安县| 石阡县| 大邑县| 重庆市| 乌恰县| 揭西县| 商洛市| 中宁县| 土默特左旗| 嫩江县| 隆林| 繁昌县| 通山县| 永福县| 和平县| 营山县| 丹棱县| 镇巴县| 泸州市| 宜城市| 兰西县| 天台县| 余姚市| 新沂市|