找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Numerical Integration; Proceedings of the C G. H?mmerlin Conference proceedings 1982 Springer Basel AG 1982

[復(fù)制鏈接]
11#
發(fā)表于 2025-3-23 11:04:56 | 只看該作者
12#
發(fā)表于 2025-3-23 14:14:39 | 只看該作者
13#
發(fā)表于 2025-3-23 19:37:37 | 只看該作者
14#
發(fā)表于 2025-3-23 22:48:36 | 只看該作者
15#
發(fā)表于 2025-3-24 03:02:38 | 只看該作者
16#
發(fā)表于 2025-3-24 07:23:46 | 只看該作者
Quadraturrest, Approximation und Chebyshev-Polynome,es and to use more robust methods. One can consider series expansions (Hilbert space, holomorphy). But there are simpler methods, employing polynomials, approximation, grids. In connection with quadrature such methods have been worked out by several authors; we mention Stroud, Locher-Zeller, Riess-J
17#
發(fā)表于 2025-3-24 13:45:28 | 只看該作者
18#
發(fā)表于 2025-3-24 14:59:14 | 只看該作者
Some Reflections on the Euler-Maclaurin Sum Formula,that paper the classical Euler-Maclaurin formula was analysed and generalized to give a variety of quadrature formulae in both one and more than one dimension. In the present contribution a similar approach will be made to investigate . formulae. Due to restrictions on space only the one dimensional
19#
發(fā)表于 2025-3-24 19:48:53 | 只看該作者
A Note on Cubature over a Triangle of a Function Having Specified Singularities,r. where r is the distance of (x,y) from C and x is the distance of (x,y) from AB. In particular we show how to construct rules which are exact for integrand functions p.(x,y)h.(r) where p. and h. are polynomials of degree λ and μ, respectively.
20#
發(fā)表于 2025-3-25 02:18:40 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 04:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
绍兴市| 五寨县| 唐山市| 福海县| 永靖县| 嘉兴市| 台中市| 泰州市| 定边县| 桃江县| 合阳县| 浦县| 汾阳市| 铅山县| 赤水市| 吉木萨尔县| 邹平县| 武宁县| 泸西县| 安义县| 无极县| 井陉县| 阿城市| 伊宁县| 昆明市| 桂林市| 廉江市| 武宁县| 昭苏县| 资源县| 万荣县| 剑川县| 泰宁县| 苗栗市| 当雄县| 肇东市| 泸溪县| 建昌县| 夏津县| 汶川县| 武强县|