找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Numerical Integration; Recent Developments, Terje O. Espelid,Alan Genz Book 1992 Springer Science+Business Media Dordrecht 1992 Numerical i

[復(fù)制鏈接]
樓主: deep-sleep
41#
發(fā)表于 2025-3-28 16:51:06 | 只看該作者
1389-2185 his nature was held, at Dalhousie University in Halifax, Canada, in 1986. Recent theoretical developments have mostly occurred in the area of integration rule c978-94-010-5169-9978-94-011-2646-5Series ISSN 1389-2185
42#
發(fā)表于 2025-3-28 19:22:59 | 只看該作者
43#
發(fā)表于 2025-3-29 02:33:30 | 只看該作者
44#
發(fā)表于 2025-3-29 06:52:19 | 只看該作者
45#
發(fā)表于 2025-3-29 07:43:34 | 只看該作者
Error Bounds Based on Approximation TheoryWe give examples for the usefulness of approximation theory in the discussion of error bounds for quadrature rules. Our main point is that this method is not only simple and general, but that it leads to sharp estimates in many cases.
46#
發(fā)表于 2025-3-29 14:30:06 | 只看該作者
Numerical Integration of Singular and Hypersingular Integrals in Boundary Element MethodsFor weakly-, Cauchy- and hypersingular surface integrals arising in three-dimensional boundary element methods, we present and analyze several numerical integration schemes. Asymptotic error estimates in terms of the size of the integration domain are given.
47#
發(fā)表于 2025-3-29 18:44:20 | 只看該作者
48#
發(fā)表于 2025-3-29 20:42:01 | 只看該作者
49#
發(fā)表于 2025-3-29 23:55:06 | 只看該作者
Developments in Solving Integral Equations Numerically substitution kernel method and some recent results. In particular, the extension to Hammerstein integral equations, an investigation of Bateman’s method as applied to eigenvalue problems and its convergence behaviour for Green’s kernels are considered.
50#
發(fā)表于 2025-3-30 04:12:17 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 03:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永春县| 莆田市| 响水县| 永寿县| 久治县| 娱乐| 诸城市| 新化县| 南汇区| 江津市| 昌黎县| 含山县| 巧家县| 鄂温| 余姚市| 定西市| 太仆寺旗| 玉树县| 汉中市| 兴安盟| 景德镇市| 井研县| 岢岚县| 休宁县| 临武县| 营山县| 桃江县| 班戈县| 合阳县| 延庆县| 塘沽区| 临潭县| 延边| 泾阳县| 宾阳县| 遂溪县| 揭阳市| 保康县| 乐昌市| 上栗县| 盘锦市|