找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: NumericalInfinities and Infinitesimals in Optimization; Yaroslav D. Sergeyev,Renato De Leone Book 2022 The Editor(s) (if applicable) and T

[復制鏈接]
樓主: CAP
11#
發(fā)表于 2025-3-23 11:32:03 | 只看該作者
On the Use of Grossone Methodology for Handling Priorities in Multi-objective Evolutionary Optimizatinite and infinitesimal numbers. Most interestingly, this technique can be easily embedded in most of the existing evolutionary algorithms, without altering their core logic. Three algorithms for MPL-MOPs are shown: the first two, called PC-NSGA-II and PC-MOEA/D, are the generalization of NSGA-II an
12#
發(fā)表于 2025-3-23 14:36:34 | 只看該作者
Exact Numerical Differentiation on?the?Infinity Computer and?Applications in?Global Optimizationise quadratic support functions and their convergence conditions are discussed. All the methods are implemented both in the traditional floating-point arithmetic and in the Infinity Computing framework.
13#
發(fā)表于 2025-3-23 21:14:30 | 只看該作者
Comparing Linear and Spherical Separation Using Grossone-Based Numerical Infinities in Classificatio selected far from both the two sets, obtaining in this way a kind of linear separation. This approach is easily extensible to the margin concept (of the type adopted in the Support Vector Machine technique) and to MIL problems. Some numerical results are reported on classical binary datasets drawn
14#
發(fā)表于 2025-3-23 23:37:29 | 只看該作者
Computing Optimal Decision Strategies Using the Infinity Computer: The Case of Non-Archimedean Zero-Simplex algorithm called Gross-Matrix-Simplex. Four numerical experiments served as test cases to verify the effectiveness and correctness of the new algorithm. Moreover, these studies helped in stressing the difference between numerical and symbolic calculations: indeed, the solution output by the
15#
發(fā)表于 2025-3-24 03:38:07 | 只看該作者
16#
發(fā)表于 2025-3-24 07:50:14 | 只看該作者
NumericalInfinities and Infinitesimals in Optimization
17#
發(fā)表于 2025-3-24 10:49:57 | 只看該作者
2194-7287 omputerscience..“Mathematicians have never been comfortable handling infinities… But an entirely new type of mathematics looks set to by-pass the problem… Today, Yaroslav Sergeyev, a mathematician at the Univer978-3-030-93644-0978-3-030-93642-6Series ISSN 2194-7287 Series E-ISSN 2194-7295
18#
發(fā)表于 2025-3-24 16:58:42 | 只看該作者
Marco Cococcioni,Alessandro Cudazzo,Massimo Pappalardo,Yaroslav D. Sergeyev
19#
發(fā)表于 2025-3-24 21:34:18 | 只看該作者
Manlio Gaudioso,Giovanni Giallombardo,Marat S. Mukhametzhanov
20#
發(fā)表于 2025-3-24 23:46:37 | 只看該作者
Leonardo Lai,Lorenzo Fiaschi,Marco Cococcioni,Kalyanmoy Deb
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 03:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
长垣县| 张家口市| 定陶县| 海南省| 靖西县| 都昌县| 广水市| 德江县| 海安县| 兰坪| 鄂州市| 安溪县| 武强县| 新乡县| 古交市| 深圳市| 延吉市| 黄大仙区| 合江县| 海伦市| 江川县| 阜阳市| 托里县| 临邑县| 华池县| 闸北区| 长岛县| 岐山县| 哈尔滨市| 梁河县| 红桥区| 青阳县| 海丰县| 兴海县| 永和县| 兴化市| 伊川县| 宁南县| 富裕县| 安远县| 桐乡市|