找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Numerical Grid Methods and Their Application to Schr?dinger’s Equation; Charles Cerjan Book 1993 Springer Science+Business Media Dordrecht

[復(fù)制鏈接]
樓主: 短暫
11#
發(fā)表于 2025-3-23 10:01:24 | 只看該作者
Numerical Calculation of Multicentre Integrals for Polyatomic Molecules, calculations in the context of Density Functional Theory emphasized. Various practical integration schemes are analyzed as well as the use of formal group theoretic techniques which are essential to reduce the complexity of the calculations.
12#
發(fā)表于 2025-3-23 15:22:12 | 只看該作者
13#
發(fā)表于 2025-3-23 18:29:54 | 只看該作者
14#
發(fā)表于 2025-3-23 22:56:02 | 只看該作者
15#
發(fā)表于 2025-3-24 03:36:40 | 只看該作者
16#
發(fā)表于 2025-3-24 08:34:36 | 只看該作者
Numerical Grid Methods and Their Application to Schr?dinger’s Equation
17#
發(fā)表于 2025-3-24 13:46:52 | 只看該作者
1389-2185 ce it represents an alternative to standard basis set expansion techniques and might offer distinct advantages to the standard techniques. A deliberate attempt 978-90-481-4308-5978-94-015-8240-7Series ISSN 1389-2185
18#
發(fā)表于 2025-3-24 18:16:23 | 只看該作者
19#
發(fā)表于 2025-3-24 22:38:39 | 只看該作者
Book 1993tational viability of grid methods have been largely superseded by applications to specific problems and deeper research into more sophisticated quadrature schemes. Underpinning this research, of course, is the belief that the generic nature of grid methods can enjoy a symbiotic development with adv
20#
發(fā)表于 2025-3-25 01:37:56 | 只看該作者
Finite Element Method for Quantum Scattering,cessfully applied to a model collinear problem which is analytically soluble and to the collinear H + H. system. Next, a three variable formulation of the co-planar A + BC system is discussed with specific reference to co-planar H + H.. Some comments on the generalization of the technique complete the discussion.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 14:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
罗甸县| 高雄市| 康定县| 长乐市| 崇礼县| 南汇区| 綦江县| 偏关县| 始兴县| 天等县| 峨眉山市| 成安县| 昔阳县| 乌兰浩特市| 连州市| 大理市| 乌拉特前旗| 正安县| 莱州市| 林西县| 内丘县| 波密县| 从化市| 海淀区| 清镇市| 洪洞县| 达州市| 海盐县| 黄陵县| 泰来县| 铜川市| 宜兴市| 桓台县| 玉屏| 慈溪市| 九龙坡区| 永德县| 枣强县| 巨鹿县| 延边| 南城县|