找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Numerical Geometry, Grid Generation and Scientific Computing; Proceedings of the 1 Vladimir A. Garanzha,Lennard Kamenski,Hang Si Conference

[復(fù)制鏈接]
查看: 18627|回復(fù): 55
樓主
發(fā)表于 2025-3-21 16:36:38 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Numerical Geometry, Grid Generation and Scientific Computing
副標(biāo)題Proceedings of the 1
編輯Vladimir A. Garanzha,Lennard Kamenski,Hang Si
視頻videohttp://file.papertrans.cn/669/668997/668997.mp4
叢書名稱Lecture Notes in Computational Science and Engineering
圖書封面Titlebook: Numerical Geometry, Grid Generation and Scientific Computing; Proceedings of the 1 Vladimir A. Garanzha,Lennard Kamenski,Hang Si Conference
描述.The focus of these conference proceedings is on research, development, and applications in the fields of numerical geometry, scientific computing and numerical simulation, particularly in mesh generation and related problems. In addition, this year’s special focus is on Delaunay triangulations and their applications, celebrating the 130th birthday of Boris Delaunay..In terms of content, the book strikes a balance between engineering algorithms and mathematical foundations.?It presents an overview of recent advances in numerical geometry, grid generation and adaptation in terms of mathematical foundations, algorithm and software development and applications...The specific topics covered include: quasi-conformal and quasi-isometric mappings, hyperelastic deformations, multidimensional generalisations of the equidistribution principle, discrete differential geometry, spatial and metric encodings, Voronoi-Delaunay theory for tilings and partitions, duality in mathematical programming and numerical geometry, mesh-based optimisation and optimal control methods. Further aspects examined include iterative solvers for variational problems and algorithm and software development. The applica
出版日期Conference proceedings 2021
關(guān)鍵詞Delaunay Triangulation; Finite Volume Method; Iterative Solvers; Mesh Adaptation; Mesh Generation; Numeri
版次1
doihttps://doi.org/10.1007/978-3-030-76798-3
isbn_softcover978-3-030-76800-3
isbn_ebook978-3-030-76798-3Series ISSN 1439-7358 Series E-ISSN 2197-7100
issn_series 1439-7358
copyrightSpringer Nature Switzerland AG 2021
The information of publication is updating

書目名稱Numerical Geometry, Grid Generation and Scientific Computing影響因子(影響力)




書目名稱Numerical Geometry, Grid Generation and Scientific Computing影響因子(影響力)學(xué)科排名




書目名稱Numerical Geometry, Grid Generation and Scientific Computing網(wǎng)絡(luò)公開度




書目名稱Numerical Geometry, Grid Generation and Scientific Computing網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Numerical Geometry, Grid Generation and Scientific Computing被引頻次




書目名稱Numerical Geometry, Grid Generation and Scientific Computing被引頻次學(xué)科排名




書目名稱Numerical Geometry, Grid Generation and Scientific Computing年度引用




書目名稱Numerical Geometry, Grid Generation and Scientific Computing年度引用學(xué)科排名




書目名稱Numerical Geometry, Grid Generation and Scientific Computing讀者反饋




書目名稱Numerical Geometry, Grid Generation and Scientific Computing讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:47:30 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:06:01 | 只看該作者
Moving Deforming Mesh Generation Based on the Quasi-Isometric Functionalthe mesh quality functional in order to compute large displacements of each mesh vertex. Intermediate meshes interpolating between the initial and the displaced states are nonsingular deformations of the initial mesh and can be used for numerical simulations with small time steps, which greatly improves the efficiency of the remeshing algorithm.
地板
發(fā)表于 2025-3-22 07:11:58 | 只看該作者
5#
發(fā)表于 2025-3-22 10:50:11 | 只看該作者
6#
發(fā)表于 2025-3-22 15:54:56 | 只看該作者
7#
發(fā)表于 2025-3-22 19:55:05 | 只看該作者
8#
發(fā)表于 2025-3-22 22:49:23 | 只看該作者
9#
發(fā)表于 2025-3-23 01:39:39 | 只看該作者
10#
發(fā)表于 2025-3-23 07:29:09 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 21:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
色达县| 凯里市| 丁青县| 开原市| 修水县| 枣阳市| 城步| 开封市| 越西县| 高陵县| 娱乐| 承德市| 乌海市| 中卫市| 白河县| 米易县| 芦溪县| 徐水县| 萨嘎县| 庐江县| 江城| 成武县| 宁晋县| 澄迈县| 朝阳市| 信阳市| 静宁县| 阜阳市| 凤冈县| 南溪县| 将乐县| 平塘县| 景东| 和静县| 河北区| 多伦县| 和平区| 巨鹿县| 三原县| 重庆市| 雅安市|