找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Numerical Fourier Analysis; Gerlind Plonka,Daniel Potts,Manfred Tasche Book 2023Latest edition The Editor(s) (if applicable) and The Autho

[復(fù)制鏈接]
查看: 12983|回復(fù): 49
樓主
發(fā)表于 2025-3-21 19:53:45 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Numerical Fourier Analysis
編輯Gerlind Plonka,Daniel Potts,Manfred Tasche
視頻videohttp://file.papertrans.cn/669/668992/668992.mp4
概述Offers the first unified presentation of Fourier analysis and corresponding numerical algorithms.Discusses many recent research developments in numerical Fourier analysis.Explores application in signa
叢書名稱Applied and Numerical Harmonic Analysis
圖書封面Titlebook: Numerical Fourier Analysis;  Gerlind Plonka,Daniel Potts,Manfred Tasche Book 2023Latest edition The Editor(s) (if applicable) and The Autho
描述New technological innovations and advances in research in areas such as spectroscopy, computer tomography, signal processing, and data analysis require a deep understanding of function approximation using Fourier methods.? To address this growing need, this monograph combines mathematical theory and numerical algorithms to offer a unified and self-contained presentation of Fourier analysis.? ? ?.The first four chapters of the text serve as an introduction to classical Fourier analysis in the univariate and multivariate cases, including the discrete Fourier transforms, providing the necessary background for all further chapters. Next, chapters explore the construction and analysis of corresponding fast algorithms in the one- and multidimensional cases. The well-known fast Fourier transforms (FFTs) are discussed, as well as recent results on the construction of the nonequispaced FFTs, high-dimensional FFTs on special lattices, and sparse FFTs.? An additional chapter is devoted to discrete trigonometric transforms and Chebyshev expansions.? The final two chapters consider various applications of numerical Fourier methods for improved function approximation, including Prony methods for
出版日期Book 2023Latest edition
關(guān)鍵詞Numerical Fourier Analysis; Discrete Fourier Transforms; Fast Fourier Transforms; Multidimensional Four
版次2
doihttps://doi.org/10.1007/978-3-031-35005-4
isbn_softcover978-3-031-35007-8
isbn_ebook978-3-031-35005-4Series ISSN 2296-5009 Series E-ISSN 2296-5017
issn_series 2296-5009
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Numerical Fourier Analysis影響因子(影響力)




書目名稱Numerical Fourier Analysis影響因子(影響力)學(xué)科排名




書目名稱Numerical Fourier Analysis網(wǎng)絡(luò)公開度




書目名稱Numerical Fourier Analysis網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Numerical Fourier Analysis被引頻次




書目名稱Numerical Fourier Analysis被引頻次學(xué)科排名




書目名稱Numerical Fourier Analysis年度引用




書目名稱Numerical Fourier Analysis年度引用學(xué)科排名




書目名稱Numerical Fourier Analysis讀者反饋




書目名稱Numerical Fourier Analysis讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:03:11 | 只看該作者
Numerical Fourier Analysis978-3-031-35005-4Series ISSN 2296-5009 Series E-ISSN 2296-5017
板凳
發(fā)表于 2025-3-22 02:18:00 | 只看該作者
地板
發(fā)表于 2025-3-22 05:28:19 | 只看該作者
5#
發(fā)表于 2025-3-22 10:24:08 | 只看該作者
Numerical Applications of DFT,This chapter addresses numerical applications of DFTs. In Sect. 9.1, we describe a powerful multidimensional approximation method, the so-called cardinal interpolation by translates . with ., where . is a compactly supported, continuous function.
6#
發(fā)表于 2025-3-22 13:38:35 | 只看該作者
7#
發(fā)表于 2025-3-22 20:13:48 | 只看該作者
8#
發(fā)表于 2025-3-22 22:38:37 | 只看該作者
https://doi.org/10.1007/978-3-031-35005-4Numerical Fourier Analysis; Discrete Fourier Transforms; Fast Fourier Transforms; Multidimensional Four
9#
發(fā)表于 2025-3-23 01:39:00 | 只看該作者
10#
發(fā)表于 2025-3-23 08:58:52 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 11:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
东乡| 宁安市| 黔西| 中阳县| 英吉沙县| 铅山县| 措美县| 崇仁县| 正镶白旗| 阜南县| 崇信县| 博客| 榕江县| 临桂县| 广宁县| 江川县| 普格县| 荥阳市| 漠河县| 富源县| 抚州市| 安新县| 乐至县| 河北省| 册亨县| 海宁市| 固阳县| 长葛市| 丹东市| 石门县| 满城县| 枣阳市| 衡水市| 伊春市| 兴化市| 虞城县| 阳谷县| 瓮安县| 色达县| 独山县| 称多县|