找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Numerical Ecology with R; Daniel Borcard,Fran?ois Gillet,Pierre Legendre Book 2018Latest edition Springer International Publishing AG, par

[復(fù)制鏈接]
查看: 13589|回復(fù): 40
樓主
發(fā)表于 2025-3-21 18:43:44 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Numerical Ecology with R
編輯Daniel Borcard,Fran?ois Gillet,Pierre Legendre
視頻videohttp://file.papertrans.cn/669/668982/668982.mp4
概述Offers an up-to-date, practical guide to numerical ecology from leaders in the field.Provides complete data sets, functions and scripts.Includes examples with extensive commentaries
叢書名稱Use R!
圖書封面Titlebook: Numerical Ecology with R;  Daniel Borcard,Fran?ois Gillet,Pierre Legendre Book 2018Latest edition Springer International Publishing AG, par
描述.This new edition of .Numerical Ecology with R. guides readers through an applied exploration of the major methods of multivariate data analysis, as seen through the eyes of three ecologists. It provides a bridge between a textbook of numerical ecology and the implementation of this discipline in the R language. The book begins by examining some exploratory approaches. It proceeds logically with the construction of the key building blocks of most methods, i.e. association measures and matrices, and then submits example data to three families of approaches: clustering, ordination and canonical ordination. The last two chapters make use of these methods to explore important and contemporary issues in ecology: the analysis of spatial structures and of community diversity. The aims of methods thus range from descriptive to explanatory and predictive and encompass a wide variety of approaches that should provide readers with an extensive toolbox that can address a wide palette of questions arising in contemporary multivariate ecological analysis. The second edition of this book features a complete revision to the R code and offers improved procedures and more diverse applications of the
出版日期Book 2018Latest edition
關(guān)鍵詞Numerical Ecology; R Language; R Code; Ecology; Environmental Science; Data Analysis; Cluster Analysis; Unc
版次2
doihttps://doi.org/10.1007/978-3-319-71404-2
isbn_softcover978-3-319-71403-5
isbn_ebook978-3-319-71404-2Series ISSN 2197-5736 Series E-ISSN 2197-5744
issn_series 2197-5736
copyrightSpringer International Publishing AG, part of Springer Nature 2018
The information of publication is updating

書目名稱Numerical Ecology with R影響因子(影響力)




書目名稱Numerical Ecology with R影響因子(影響力)學(xué)科排名




書目名稱Numerical Ecology with R網(wǎng)絡(luò)公開度




書目名稱Numerical Ecology with R網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Numerical Ecology with R被引頻次




書目名稱Numerical Ecology with R被引頻次學(xué)科排名




書目名稱Numerical Ecology with R年度引用




書目名稱Numerical Ecology with R年度引用學(xué)科排名




書目名稱Numerical Ecology with R讀者反饋




書目名稱Numerical Ecology with R讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:32:55 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:20:48 | 只看該作者
Cluster Analysis,arious clustering methods and compute them, apply these techniques to the Doubs River data to identify groups of sites and fish species. You will also explore two methods of constrained clustering, a powerful modelling approach where the clustering process is constrained by an external data set.
地板
發(fā)表于 2025-3-22 07:07:55 | 只看該作者
5#
發(fā)表于 2025-3-22 11:02:59 | 只看該作者
6#
發(fā)表于 2025-3-22 15:09:33 | 只看該作者
Spatial Analysis of Ecological Data,test and interpret scale-dependent spatial structures; combine spatial analysis and variation partitioning; and assess spatial structures in canonical ordinations by computing variograms of explained and residual ordination scores.
7#
發(fā)表于 2025-3-22 19:28:53 | 只看該作者
8#
發(fā)表于 2025-3-22 21:19:41 | 只看該作者
Exploratory Data Analysis,arn some EDA techniques that are frequently applied to multidimensional ecological data and explore the Doubs dataset in hydrobiology as a first worked example, using . functions mostly found in standard packages.
9#
發(fā)表于 2025-3-23 03:40:04 | 只看該作者
Unconstrained Ordination, or the Oribatid mite data; overlay the result of a cluster analysis on an ordination diagram to improve the interpretation of both analyses; interpret the structures revealed by the ordination of the species data using the environmental variables from a second dataset; and finally write your own PCA function.
10#
發(fā)表于 2025-3-23 06:45:07 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 07:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
镇宁| 大英县| 绥宁县| 广宗县| 河津市| 墨竹工卡县| 黄骅市| 阿拉善盟| 吉安市| 和硕县| 平泉县| 顺义区| 峨边| 米脂县| 定兴县| 罗甸县| 桃源县| 逊克县| 巍山| 秦安县| 梧州市| 黑龙江省| 延庆县| 荣成市| 新晃| 自贡市| 林口县| 沈丘县| 沙雅县| 兴仁县| 崇明县| 凌云县| 德昌县| 淅川县| 建水县| 扎兰屯市| 淮阳县| 峨眉山市| 益阳市| 嘉禾县| 蒙城县|