找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Numerical Computations with GPUs; Volodymyr Kindratenko Book 2014 Springer International Publishing Switzerland 2014 Differential equation

[復(fù)制鏈接]
樓主: STH
41#
發(fā)表于 2025-3-28 16:24:08 | 只看該作者
42#
發(fā)表于 2025-3-28 22:41:20 | 只看該作者
Batch Matrix Exponentiationebra packages is closely tied to the performance of matrix–matrix multiplication. Batch matrix–matrix multiplication, the matrix–matrix multiplication of a large number of relatively small matrices, is a developing area within dense linear algebra and is relevant to various application areas such as
43#
發(fā)表于 2025-3-29 01:00:15 | 只看該作者
44#
發(fā)表于 2025-3-29 04:27:56 | 只看該作者
A Flexible CUDA LU-Based Solver for Small, Batched Linear Systemscations such as reactive flow transport models, which apply the Newton–Raphson technique to linearize and iteratively solve the sets of non linear equations that represent the reactions for ten of thousands to millions of physical locations. The implementation exploits somewhat counterintuitive GPGP
45#
發(fā)表于 2025-3-29 10:58:37 | 只看該作者
46#
發(fā)表于 2025-3-29 14:09:05 | 只看該作者
Solving Ordinary Differential Equations on GPUs in engineering, economics and social sciences. Given their vast appearance, it is of crucial importance to develop efficient numerical routines for solving ODEs that employ the computational power of modern GPUs. Here, we present a high-level approach to compute numerical solutions of ODEs by devel
47#
發(fā)表于 2025-3-29 15:58:22 | 只看該作者
48#
發(fā)表于 2025-3-29 23:17:53 | 只看該作者
49#
發(fā)表于 2025-3-30 00:18:14 | 只看該作者
A GPU Implementation for Solving the Convection Diffusion Equation Using the Local Modified SOR Methfor GPUs. We demonstrate two generally applicable programming techniques, memory reordering as a means of coalescing and recomputation of stored data as a means of alleviating the memory bandwidth bottleneck and increasing the feasible problem size. We focus on the local relaxation version of SOR. I
50#
發(fā)表于 2025-3-30 04:51:42 | 只看該作者
Finite-Difference in Time-Domain Scalable Implementations on CUDA and OpenCLlarge spaces, or long non-sinusoidal waveforms, imply high computational floating-point performance, it is of practical interest to take advantage of current and emergent multicore architectures, namely Graphics Processing Units (GPUs) (Pratas, et al.: Fine-grain parallelism using multi-core, cell/B
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 22:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阜宁县| 文化| 衢州市| 兴宁市| 潼关县| 永吉县| 宝兴县| 孟村| 巧家县| 赣州市| 贡嘎县| 阳泉市| 曲阜市| 柘荣县| 西林县| 揭阳市| 普安县| 壤塘县| 蓝田县| 民勤县| 岳普湖县| 通河县| 宕昌县| 山丹县| 资阳市| 含山县| 吉林市| 大名县| 丽江市| 赤壁市| 嫩江县| 高清| 大荔县| 济南市| 东丰县| 社旗县| 宣武区| 敦煌市| 长泰县| 宕昌县| 平谷区|