找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Numerical Boundary Value ODEs; Proceedings of an In Uri M. Ascher,Robert D. Russell Conference proceedings 1985 Birkh?user Boston, Inc. 198

[復(fù)制鏈接]
樓主: infection
11#
發(fā)表于 2025-3-23 13:12:17 | 只看該作者
12#
發(fā)表于 2025-3-23 16:47:16 | 只看該作者
13#
發(fā)表于 2025-3-23 19:45:28 | 只看該作者
A Finite Difference Method for the Basic Stationary Semiconductor Device Equationsese equations model potential distribution, carrier concentration and current flow in an arbitrary one-dimensional semiconductor device and they consist of three second order ordinary differential equations subject to boundary conditions. A small parameter appears as multiplier of the second derivat
14#
發(fā)表于 2025-3-23 22:13:35 | 只看該作者
Solution of Premixed and Counterflow Diffusion Flame Problems by Adaptive Boundary Value Methodscs with complicated transport phenomena. Two of the simplest models in which these processes are studied are the premixed laminar flame and the counterflow diffusion flame. In both cases the flow is essentially one-dimensional and the governing equations can be reduced to a set of coupled nonlinear
15#
發(fā)表于 2025-3-24 06:06:54 | 只看該作者
Improving the Performance of Numerical Methods for Two Point Boundary Value Problemshe convergence requirements of the corresponding iteration schemes (used to solve the discretized problem) has been investigated. Appropriate modifications to these methods which permit the effective solution of such problems will be discussed. We will also identify a subfamily of the Runge-Kutta me
16#
發(fā)表于 2025-3-24 08:06:49 | 只看該作者
17#
發(fā)表于 2025-3-24 13:16:09 | 只看該作者
18#
發(fā)表于 2025-3-24 17:51:25 | 只看該作者
19#
發(fā)表于 2025-3-24 19:17:02 | 只看該作者
20#
發(fā)表于 2025-3-25 01:00:31 | 只看該作者
Riccati Transformations: When and How to Use?In this paper the problem of interest is a well-conditioned n-dimensional boundary value problem (BVP): .subject to the boundary conditions . (B.,B. ∈IR. and b ∈ IR.).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 00:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
屯留县| 太保市| 兴业县| 凤台县| 安岳县| 库车县| 美姑县| 屏东市| 合肥市| 乐业县| 和硕县| 蓬安县| 平阳县| 那曲县| 繁昌县| 安岳县| 营口市| 梅州市| 井研县| 宁晋县| 富阳市| 驻马店市| 东方市| 石柱| 徐州市| 宁国市| 揭东县| 庆云县| 东山县| 监利县| 永吉县| 启东市| 枣阳市| 通城县| 城固县| 双辽市| 望江县| 建昌县| 醴陵市| 赤壁市| 阳山县|