找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Numerical Bifurcation Analysis for Reaction-Diffusion Equations; Zhen Mei Book 2000 Springer-Verlag Berlin Heidelberg 2000 Numerics.Numeri

[復(fù)制鏈接]
查看: 14802|回復(fù): 53
樓主
發(fā)表于 2025-3-21 19:57:01 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Numerical Bifurcation Analysis for Reaction-Diffusion Equations
編輯Zhen Mei
視頻videohttp://file.papertrans.cn/669/668965/668965.mp4
概述First monograph on numerical aspects of bifurcation theory.Includes supplementary material:
叢書(shū)名稱(chēng)Springer Series in Computational Mathematics
圖書(shū)封面Titlebook: Numerical Bifurcation Analysis for Reaction-Diffusion Equations;  Zhen Mei Book 2000 Springer-Verlag Berlin Heidelberg 2000 Numerics.Numeri
描述Reaction-diffusion equations are typical mathematical models in biology, chemistry and physics. These equations often depend on various parame- ters, e. g. temperature, catalyst and diffusion rate, etc. Moreover, they form normally a nonlinear dissipative system, coupled by reaction among differ- ent substances. The number and stability of solutions of a reaction-diffusion system may change abruptly with variation of the control parameters. Cor- respondingly we see formation of patterns in the system, for example, an onset of convection and waves in the chemical reactions. This kind of phe- nomena is called bifurcation. Nonlinearity in the system makes bifurcation take place constantly in reaction-diffusion processes. Bifurcation in turn in- duces uncertainty in outcome of reactions. Thus analyzing bifurcations is essential for understanding mechanism of pattern formation and nonlinear dynamics of a reaction-diffusion process. However, an analytical bifurcation analysis is possible only for exceptional cases. This book is devoted to nu- merical analysis of bifurcation problems in reaction-diffusion equations. The aim is to pursue a systematic investigation of generic bifurcations a
出版日期Book 2000
關(guān)鍵詞Numerics; Numerik; Reaktion-Diffusionsgleichungen; Verzweigung; bifurcation; calculus; differential equati
版次1
doihttps://doi.org/10.1007/978-3-662-04177-2
isbn_softcover978-3-642-08669-4
isbn_ebook978-3-662-04177-2Series ISSN 0179-3632 Series E-ISSN 2198-3712
issn_series 0179-3632
copyrightSpringer-Verlag Berlin Heidelberg 2000
The information of publication is updating

書(shū)目名稱(chēng)Numerical Bifurcation Analysis for Reaction-Diffusion Equations影響因子(影響力)




書(shū)目名稱(chēng)Numerical Bifurcation Analysis for Reaction-Diffusion Equations影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Numerical Bifurcation Analysis for Reaction-Diffusion Equations網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Numerical Bifurcation Analysis for Reaction-Diffusion Equations網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Numerical Bifurcation Analysis for Reaction-Diffusion Equations被引頻次




書(shū)目名稱(chēng)Numerical Bifurcation Analysis for Reaction-Diffusion Equations被引頻次學(xué)科排名




書(shū)目名稱(chēng)Numerical Bifurcation Analysis for Reaction-Diffusion Equations年度引用




書(shū)目名稱(chēng)Numerical Bifurcation Analysis for Reaction-Diffusion Equations年度引用學(xué)科排名




書(shū)目名稱(chēng)Numerical Bifurcation Analysis for Reaction-Diffusion Equations讀者反饋




書(shū)目名稱(chēng)Numerical Bifurcation Analysis for Reaction-Diffusion Equations讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:10:51 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:47:57 | 只看該作者
One-Dimensional Reaction-Diffusion Equations, To ensure a correct reflection of bifurcation scenario in discretizations and to reduce imperfection of singularities, we consider a preservation of multiplicities of the bifurcation points in the discrete problems. A continuation-Arnoldi algorithm is exploited to trace the solution branches and to detect secondary bifurcations.
地板
發(fā)表于 2025-3-22 07:33:53 | 只看該作者
5#
發(fā)表于 2025-3-22 11:25:26 | 只看該作者
6#
發(fā)表于 2025-3-22 13:19:51 | 只看該作者
Springer Series in Computational Mathematicshttp://image.papertrans.cn/n/image/668965.jpg
7#
發(fā)表于 2025-3-22 19:06:33 | 只看該作者
8#
發(fā)表于 2025-3-22 23:06:50 | 只看該作者
9#
發(fā)表于 2025-3-23 05:06:54 | 只看該作者
10#
發(fā)表于 2025-3-23 08:47:09 | 只看該作者
Bifurcations along a Homotopy of Boundary Conditions,We study in this chapter the impact of boundary conditions on steady state bifurcations of reaction-diffusion problems. To distinguish influence of boundary conditions from that of interactions among the different species (components), we consider a scalar reaction-diffusion equation .with Robin boundary conditions
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 13:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
胶州市| 阿图什市| 蕲春县| 汉沽区| 涟源市| 墨竹工卡县| 沅陵县| 连州市| 璧山县| 松阳县| 垦利县| 娱乐| 贡觉县| 乐山市| 长岛县| 西丰县| 金平| 南宁市| 逊克县| 类乌齐县| 仁怀市| 岱山县| 五台县| 宝兴县| 北票市| 平顶山市| 太仓市| 苗栗县| 高密市| 米易县| 关岭| 柳江县| 永靖县| 上杭县| 镇坪县| 宁阳县| 郁南县| 托克逊县| 舞钢市| 拜城县| 浙江省|