找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Numerical Analysis of Compressible Fluid Flows; Eduard Feireisl,Mária Luká?ová-Medvi?ová,Bangwei S Book 2021 The Editor(s) (if applicable)

[復(fù)制鏈接]
查看: 19348|回復(fù): 53
樓主
發(fā)表于 2025-3-21 19:42:40 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Numerical Analysis of Compressible Fluid Flows
編輯Eduard Feireisl,Mária Luká?ová-Medvi?ová,Bangwei S
視頻videohttp://file.papertrans.cn/669/668941/668941.mp4
概述This is the first monograph on the numerical analysis of oscillatory solutions to problems in fluid mechanics. It contains completely new ideas never published before.An effective way of computation o
叢書(shū)名稱(chēng)MS&A
圖書(shū)封面Titlebook: Numerical Analysis of Compressible Fluid Flows;  Eduard Feireisl,Mária Luká?ová-Medvi?ová,Bangwei S Book 2021 The Editor(s) (if applicable)
描述.This book is devoted to the numerical analysis of compressible fluids in the spirit of the celebrated Lax equivalence theorem. The text is aimed at graduate students in mathematics and fluid dynamics, researchers in applied mathematics, numerical analysis and scientific computing, and engineers and physicists..The book contains original theoretical material based on a new approach to generalized solutions (dissipative or measure-valued solutions). The concept of a weak-strong uniqueness principle in the class of generalized solutions is used to prove the convergence of various numerical methods. The problem of oscillatory solutions is solved by an original adaptation of the method of K-convergence. An effective method of computing the Young measures is presented. Theoretical results are illustrated by a series of numerical experiments..Applications of these concepts are to be expected in other problems of fluid mechanics and related fields..
出版日期Book 2021
關(guān)鍵詞compressible fluid flow; numerical analysis; measure-valued solutions; K-convergence; fluid mechanics
版次1
doihttps://doi.org/10.1007/978-3-030-73788-7
isbn_softcover978-3-030-73790-0
isbn_ebook978-3-030-73788-7Series ISSN 2037-5255 Series E-ISSN 2037-5263
issn_series 2037-5255
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書(shū)目名稱(chēng)Numerical Analysis of Compressible Fluid Flows影響因子(影響力)




書(shū)目名稱(chēng)Numerical Analysis of Compressible Fluid Flows影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Numerical Analysis of Compressible Fluid Flows網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Numerical Analysis of Compressible Fluid Flows網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Numerical Analysis of Compressible Fluid Flows被引頻次




書(shū)目名稱(chēng)Numerical Analysis of Compressible Fluid Flows被引頻次學(xué)科排名




書(shū)目名稱(chēng)Numerical Analysis of Compressible Fluid Flows年度引用




書(shū)目名稱(chēng)Numerical Analysis of Compressible Fluid Flows年度引用學(xué)科排名




書(shū)目名稱(chēng)Numerical Analysis of Compressible Fluid Flows讀者反饋




書(shū)目名稱(chēng)Numerical Analysis of Compressible Fluid Flows讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:52:13 | 只看該作者
Inviscid Fluids: Euler SystemThe Euler system describing the motion of inviscid perfect fluid is presented. We discuss its local-in-time well-posedness in the framework of smooth solutions, development of singularities, and global ill-posedness for smooth initial data in the class of admissible weak solutions.
板凳
發(fā)表于 2025-3-22 02:03:22 | 只看該作者
地板
發(fā)表于 2025-3-22 07:55:47 | 只看該作者
5#
發(fā)表于 2025-3-22 12:01:52 | 只看該作者
6#
發(fā)表于 2025-3-22 14:55:11 | 只看該作者
Numerical MethodsWe introduce a finite volume method for the approximation of equations governing the motion of both inviscid and viscous compressible fluids. In particular, we define stable and consistent numerical approximation of the Euler and the Navier–Stokes equations.
7#
發(fā)表于 2025-3-22 19:35:20 | 只看該作者
8#
發(fā)表于 2025-3-22 22:51:01 | 只看該作者
Finite Volume Method for?the?Barotropic Euler System – RevisitedInspired by the Brenner-type regularization we propose a finite volume method for the barotropic Euler system and show that it is unconditionally convergent. In particular, the density remains strictly positive at any level of approximation without imposing any extra condition of CFL type.
9#
發(fā)表于 2025-3-23 01:52:17 | 只看該作者
10#
發(fā)表于 2025-3-23 08:25:57 | 只看該作者
Numerical Analysis of Compressible Fluid Flows978-3-030-73788-7Series ISSN 2037-5255 Series E-ISSN 2037-5263
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 20:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
双峰县| 寿阳县| 山阳县| 临泽县| 西乌| 晴隆县| 安徽省| 正阳县| 泊头市| 巴南区| 会昌县| 乐都县| 平和县| 尉犁县| 常熟市| 盐亭县| 唐海县| 马山县| SHOW| 永修县| 卓尼县| 西丰县| 黔江区| 乐山市| 温宿县| 灌云县| 平罗县| 新田县| 重庆市| 临江市| 邹城市| 霍城县| 扶余县| 四子王旗| 柘荣县| 竹溪县| 巫山县| 仁化县| 荔浦县| 中江县| 讷河市|