找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Numerical Analysis and Its Applications; 5th International Co Ivan Dimov,István Faragó,Lubin Vulkov Conference proceedings 2013 Springer-Ve

[復(fù)制鏈接]
樓主: BRISK
11#
發(fā)表于 2025-3-23 10:44:15 | 只看該作者
Flux-Splitting Schemes for Parabolic Problemsality faces essential difficulties. In parabolic problems, some possibilities are associated with the transition to a new formulation of the problem, where the fluxes (derivatives with respect to a spatial direction) are treated as unknown quantities. In this case, the original problem is rewritten
12#
發(fā)表于 2025-3-23 14:01:02 | 只看該作者
13#
發(fā)表于 2025-3-23 19:36:51 | 只看該作者
Unconditionally Stable Schemes for Non-stationary Convection-Diffusion Equationsproblem. In this work we construct unconditionally stable scheme for non-stationary convection-diffusion equations, which are based on use of new variables. Also, we consider these equations in the form of convection-diffusion-reaction and construct unconditionally stable schemes when explicit-impli
14#
發(fā)表于 2025-3-23 23:42:03 | 只看該作者
15#
發(fā)表于 2025-3-24 05:40:47 | 只看該作者
16#
發(fā)表于 2025-3-24 09:54:04 | 只看該作者
High Order Accurate Difference Schemes for Hyperbolic IBVP fourth orders of accuracy difference schemes for the approximate solution of this problem are presented and the stability estimates for the solutions of these difference schemes are obtained. Some results of numerical experiments are presented in order to support theoretical statements.
17#
發(fā)表于 2025-3-24 14:39:30 | 只看該作者
Modified Crank-Nicholson Difference Schemes for Ultra Parabolic Equations with Neumann Conditionra-parabolic equations. For approximately solving the given problem, the second-order of accuracy modified Crank-Nicholson difference schemes are presented. Theorem on almost coercive stability of these difference schemes is established. Numerical example is given to illustrate the applicability and
18#
發(fā)表于 2025-3-24 18:39:41 | 只看該作者
19#
發(fā)表于 2025-3-24 20:03:16 | 只看該作者
E. O’Riordan,J. Quinno sciences like physics, cognitive (neuro)science, and biology. We show that the oldest paradigm of thinking, the world or the “universe,” in the broadest sense assumed by scientists and philosophers, has been a misleading paradigm and that overall has to be replaced with EDWs perspective. Within th
20#
發(fā)表于 2025-3-25 02:00:01 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 20:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
于田县| 金乡县| 高邑县| 延吉市| 垫江县| 大姚县| 保山市| 全椒县| 防城港市| 浦北县| 连州市| 河曲县| 盐亭县| 湘潭县| 新源县| 如皋市| 东安县| 云南省| 星子县| 汨罗市| 女性| 邳州市| 桂平市| 大英县| 大庆市| 景德镇市| 彭水| 浮山县| 鸡东县| 新营市| 尚义县| 杭锦后旗| 宣城市| 尤溪县| 阳城县| 克什克腾旗| 麻城市| 临朐县| 龙井市| 五峰| 犍为县|