找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Numerical Analysis; Roger Temam Book 1973 D. Reidel Publishing Company, Dordrecht, Holland 1973 Approximation.calculus.finite element meth

[復(fù)制鏈接]
樓主: bile-acids
11#
發(fā)表于 2025-3-23 10:47:41 | 只看該作者
Spaces of Functions Associated with an open set in RLet Ω be an open set of R. with boundary Γ; we will associate with this open set several spaces of functions for later use.
12#
發(fā)表于 2025-3-23 15:23:25 | 只看該作者
13#
發(fā)表于 2025-3-23 20:48:04 | 只看該作者
Approximation of Some Function Spaces by Finite Differences (II)In this chapter we construct an internal approximation of .(Ω), an external approximation of .(Ω) and a generalized external approximation of .(Ω), using finite differences. We keep the notations introduced in Section 8.1, and the open set Ω is assumed to be bounded.
14#
發(fā)表于 2025-3-23 23:35:53 | 只看該作者
15#
發(fā)表于 2025-3-24 04:02:57 | 只看該作者
Example II: The Neumann ProblemWe are in the situation discussed in Section 1.2; Ω is a bounded open set in R. with boundary Г, we put .(Ω) and .(Ω) and these spaces are provided with their usual Hubert structure (cf. Chapter 7):
16#
發(fā)表于 2025-3-24 07:49:47 | 只看該作者
The Exact ProblemWe will describe here the nonlinear elliptic problem that we want to study, and we prove existence and uniqueness of the solutions of this problem. Existence is shown by the Galerkin method, which at the same time gives first method for approximate solution of the equation.
17#
發(fā)表于 2025-3-24 14:29:18 | 只看該作者
Approximate ProblemsWe study the approximate solution of problem (13.1) by a finite difference method.
18#
發(fā)表于 2025-3-24 18:20:18 | 只看該作者
19#
發(fā)表于 2025-3-24 20:41:42 | 只看該作者
20#
發(fā)表于 2025-3-25 02:40:49 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 19:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
台前县| 靖边县| 肇州县| 南部县| 荥阳市| 蕉岭县| 平阴县| 游戏| 东港市| 仁布县| 孟州市| 农安县| 米易县| 平乡县| 靖安县| 墨脱县| 青龙| 赤壁市| 石景山区| 福贡县| 罗山县| 师宗县| 江城| 涡阳县| 府谷县| 合阳县| 安龙县| 资源县| 宕昌县| 宜君县| 什邡市| 沂水县| 建宁县| 鄂温| 台中县| 宁明县| 朔州市| 恩平市| 通许县| 黔南| 登封市|