找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Number-Theoretic Methods in Cryptology; First International Jerzy Kaczorowski,Josef Pieprzyk,Jacek Pomyka?a Conference proceedings 2018 Sp

[復(fù)制鏈接]
樓主: POL
11#
發(fā)表于 2025-3-23 13:45:58 | 只看該作者
12#
發(fā)表于 2025-3-23 17:55:57 | 只看該作者
13#
發(fā)表于 2025-3-23 20:28:02 | 只看該作者
Robert Dry?o,Jacek Pomyka?a possible are needed in conjunction with rapid and simple methods of calculating equilibrium constants, heat balances and the EMF of galvanic cells. For these three types of calculation the following three ther- modynamic functions are suitable: The Planck function, the enthalpy and the Gibbs free e
14#
發(fā)表于 2025-3-24 01:09:18 | 只看該作者
15#
發(fā)表于 2025-3-24 02:30:16 | 只看該作者
A Crossbred Algorithm for Solving Boolean Polynomial Systemsn . variables, we want to find its solutions over .. Except for ., the problem is known to be NP-hard, and its hardness has been used to create public cryptosystems; this motivates the search for faster algorithms to solve this problem. After reviewing the state of the art, we describe a new algorit
16#
發(fā)表于 2025-3-24 09:36:37 | 只看該作者
17#
發(fā)表于 2025-3-24 12:19:26 | 只看該作者
18#
發(fā)表于 2025-3-24 17:38:52 | 只看該作者
Short Solutions to Nonlinear Systems of Equationstivariate Quadratic (MQ) problem by requiring the solution be short; as well as the Short Integer Solutions (SIS) problem by requiring the underlying system of equations be nonlinear. The joint requirement causes common solving strategies such as lattice reduction or Gr?bner basis algorithms to fail
19#
發(fā)表于 2025-3-24 20:21:46 | 只看該作者
A Novel RSA-Like Cryptosystem Based on a Generalization of the Rédei Rational FunctionsPell equation. We discuss some interesting properties and remarks about this product that can also be evaluated through a generalization of the Rédei rational functions. We then exploit these results to construct a novel RSA-like scheme that is more secure than RSA in broadcast applications. Moreove
20#
發(fā)表于 2025-3-25 00:55:47 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 20:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
芜湖市| 专栏| 泰顺县| 十堰市| 三河市| 泰州市| 湖南省| 永新县| 双桥区| 东方市| 宁德市| 荆州市| 无锡市| 无为县| 杭锦旗| 孟村| 祁连县| 寻乌县| 金湖县| 棋牌| 盐池县| 文山县| 甘泉县| 富民县| 德保县| 绥宁县| 晋江市| 同心县| 高青县| 萨迦县| 广德县| 天镇县| 日喀则市| 赫章县| 石屏县| 民乐县| 岑溪市| 普兰县| 共和县| 莆田市| 从江县|