找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Number Theory in Science and Communication; With Applications in Manfred R. Schroeder Book 19841st edition Springer-Verlag Berlin Heidelber

[復(fù)制鏈接]
樓主: 貪吃的人
21#
發(fā)表于 2025-3-25 04:51:28 | 只看該作者
Primesds counter-intuitive and, in fact, it isn’t true, as Euclid demonstrated a long time ago. Actually, he did it without demonstrating any primes — he just showed that assuming a finite number of primes leads to a neat contradiction.
22#
發(fā)表于 2025-3-25 10:46:14 | 只看該作者
23#
發(fā)表于 2025-3-25 12:29:42 | 只看該作者
24#
發(fā)表于 2025-3-25 16:41:25 | 只看該作者
25#
發(fā)表于 2025-3-25 20:36:53 | 只看該作者
Quadratic Congruencesnication tasks as certified receipts, remote signing of contracts, and coin tossing — or playing poker over the telephone (discussed in Chap. 19). Finally, quadratic congruences are needed in the definition of pseudoprimes, which were once almost as important as actual primes in digital encryption (see Chap. 19).
26#
發(fā)表于 2025-3-26 02:20:10 | 只看該作者
IntroductionHermann Minkowski, being more modest than Kronecker, once said “The primary source (Urquell) of all of mathematics are the integers.” Today, integer arithmetic is important in a wide spectrum of human activities and natural phenomena amenable to mathematic analysis.
27#
發(fā)表于 2025-3-26 08:08:38 | 只看該作者
The Natural NumbersHere we encounter such basic concepts as ., ., and ., and we learn the very fundamental fact that the composites can be represented in a . way as a product of primes.
28#
發(fā)表于 2025-3-26 12:06:43 | 只看該作者
29#
發(fā)表于 2025-3-26 13:40:22 | 只看該作者
30#
發(fā)表于 2025-3-26 20:33:07 | 只看該作者
Knapsack EncryptionAs a diversion we return in this chapter to another (once) promising public-key encryption scheme using a trap-door function: . It, too, is based on residue arithmetic, but uses multiplication rather than exponentiation, making it easier to instrument and theoretically more transparent.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 11:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
沧州市| 邯郸市| 应用必备| 静海县| 丰宁| 滦南县| 凌源市| 漾濞| 霍州市| 商丘市| 普兰店市| 武安市| 彭阳县| 奉贤区| 阜平县| 比如县| 樟树市| 靖边县| 祥云县| 保靖县| 涞水县| 余干县| 泸溪县| 桐庐县| 桂东县| 涿州市| 瑞丽市| 会泽县| 西昌市| 浠水县| 宁都县| 韩城市| 德化县| 安化县| 商水县| 瓦房店市| 临桂县| 绥芬河市| 茂名市| 武胜县| 公安县|