找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Number Theory in Science and Communication; With Applications in Manfred R. Schroeder Book 19841st edition Springer-Verlag Berlin Heidelber

[復(fù)制鏈接]
樓主: 貪吃的人
21#
發(fā)表于 2025-3-25 04:51:28 | 只看該作者
Primesds counter-intuitive and, in fact, it isn’t true, as Euclid demonstrated a long time ago. Actually, he did it without demonstrating any primes — he just showed that assuming a finite number of primes leads to a neat contradiction.
22#
發(fā)表于 2025-3-25 10:46:14 | 只看該作者
23#
發(fā)表于 2025-3-25 12:29:42 | 只看該作者
24#
發(fā)表于 2025-3-25 16:41:25 | 只看該作者
25#
發(fā)表于 2025-3-25 20:36:53 | 只看該作者
Quadratic Congruencesnication tasks as certified receipts, remote signing of contracts, and coin tossing — or playing poker over the telephone (discussed in Chap. 19). Finally, quadratic congruences are needed in the definition of pseudoprimes, which were once almost as important as actual primes in digital encryption (see Chap. 19).
26#
發(fā)表于 2025-3-26 02:20:10 | 只看該作者
IntroductionHermann Minkowski, being more modest than Kronecker, once said “The primary source (Urquell) of all of mathematics are the integers.” Today, integer arithmetic is important in a wide spectrum of human activities and natural phenomena amenable to mathematic analysis.
27#
發(fā)表于 2025-3-26 08:08:38 | 只看該作者
The Natural NumbersHere we encounter such basic concepts as ., ., and ., and we learn the very fundamental fact that the composites can be represented in a . way as a product of primes.
28#
發(fā)表于 2025-3-26 12:06:43 | 只看該作者
29#
發(fā)表于 2025-3-26 13:40:22 | 只看該作者
30#
發(fā)表于 2025-3-26 20:33:07 | 只看該作者
Knapsack EncryptionAs a diversion we return in this chapter to another (once) promising public-key encryption scheme using a trap-door function: . It, too, is based on residue arithmetic, but uses multiplication rather than exponentiation, making it easier to instrument and theoretically more transparent.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 13:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新晃| 兴宁市| 禄丰县| 尉氏县| 辽源市| 手机| 静乐县| 惠东县| 澄城县| 沾益县| 东海县| 新宾| 大埔区| 三台县| 东明县| 高安市| 邯郸市| 北流市| 木兰县| 竹北市| 凤阳县| 板桥市| 炎陵县| 沅陵县| 乌拉特中旗| 平乐县| 舒城县| 大方县| 邢台县| 南投市| 霍邱县| 东阳市| 旬邑县| 白朗县| 温州市| 微山县| 扬中市| 安吉县| 鹿泉市| 怀来县| 海原县|