找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Number Theory and Physics; Proceedings of the W Jean-Marc Luck,Pierre Moussa,Michel Waldschmidt Conference proceedings 19901st edition Spri

[復(fù)制鏈接]
樓主: 不足木
11#
發(fā)表于 2025-3-23 11:05:05 | 只看該作者
Spectra of Some Almost Periodic OperatorsTwo examples of almost periodic Jacobi matrices, representing respectively the so-called Fibonacci and a Hierarchical Hamiltonian, are discussed. Each of them has a purely singular continuous spectrum supported by a Cantor set.
12#
發(fā)表于 2025-3-23 15:44:20 | 只看該作者
13#
發(fā)表于 2025-3-23 18:55:23 | 只看該作者
14#
發(fā)表于 2025-3-23 22:22:42 | 只看該作者
15#
發(fā)表于 2025-3-24 05:05:52 | 只看該作者
Number Theory and Physics978-3-642-75405-0Series ISSN 0930-8989 Series E-ISSN 1867-4941
16#
發(fā)表于 2025-3-24 08:54:43 | 只看該作者
17#
發(fā)表于 2025-3-24 12:02:44 | 只看該作者
18#
發(fā)表于 2025-3-24 16:50:53 | 只看該作者
19#
發(fā)表于 2025-3-24 19:54:20 | 只看該作者
Z/NZ Conformal Field Theories of a CFT from its fusion rules. The possible choices of . matrices are indexed by some automorphisms of the fusion algebra. We illustrate this procedure by computing the modular properties of the possible genus-one characters when the fusion algebra is the representation algebra of a finite group.
20#
發(fā)表于 2025-3-25 02:56:01 | 只看該作者
Conformal Field Theory on a Riemann Surfaceheory. Recent research has revealed that there are deep connections between conformal field theory and number theory, which may have profound implications to string theory. The equivalence of bosons and fermions in two dimensions is such an example; there an addition theorem of theta-function plays
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 23:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
肇庆市| 维西| 定陶县| 白山市| 儋州市| 旬邑县| 彭水| 天气| 本溪| 改则县| 阿拉尔市| 张家港市| 修文县| 含山县| 鹤壁市| 曲周县| 奇台县| 开封县| 土默特右旗| 尉氏县| 台北县| 资兴市| 卢湾区| 龙川县| 曲麻莱县| 犍为县| 特克斯县| 九江市| 咸阳市| 临海市| 龙游县| 毕节市| 平泉县| 慈溪市| 双城市| 丰城市| 璧山县| 岳普湖县| 石楼县| 颍上县| 上思县|