找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Number Theory and Modular Forms; Papers in Memory of Bruce Berndt,Ken Ono Book 2003 Springer-Verlag US 2003 Lattice.Prime.continued fracti

[復制鏈接]
樓主: 代表
11#
發(fā)表于 2025-3-23 12:54:45 | 只看該作者
12#
發(fā)表于 2025-3-23 16:28:10 | 只看該作者
,Modular Transformations of Ramanujan’s Fifth and Seventh Order Mock Theta Functions,and seventh order mock theta functions under the modular group generators τ → τ + 1 and τ → ?1/τ, where . = ... The transformation formulas are more complex than those of ordinary theta functions. A definition of the order of a mock theta function is also given.
13#
發(fā)表于 2025-3-23 18:48:20 | 只看該作者
14#
發(fā)表于 2025-3-23 23:02:41 | 只看該作者
15#
發(fā)表于 2025-3-24 06:15:46 | 只看該作者
On Dirichlet Series for Sums of Squares,cations of Theorem 2.1 is to obtain closed forms, in terms of . (.) and Dirichlet .-functions, for the generating functions of ..(.), ..(.), .. (.) and .. (.). for certain . and .. We also use these generating functions to obtain asymptotic estimates of the average values for each function for which we obtain a Dirichlet series.
16#
發(fā)表于 2025-3-24 10:00:26 | 只看該作者
Book 2003 at the age of 85. Rankin had broad interests and contributed fundamental papers in a wide variety of areas within number theory, geometry, analysis, and algebra. To commemorate Rankin‘s life and work, the editors have collected together 25 papers by several eminent mathematicians reflecting Rankin‘
17#
發(fā)表于 2025-3-24 14:07:11 | 只看該作者
18#
發(fā)表于 2025-3-24 17:56:29 | 只看該作者
19#
發(fā)表于 2025-3-24 20:46:19 | 只看該作者
20#
發(fā)表于 2025-3-24 23:35:43 | 只看該作者
Developments in Mathematicshttp://image.papertrans.cn/n/image/668875.jpg
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-8 14:27
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
汶上县| 八宿县| 瓮安县| 台东市| 襄城县| 抚松县| 慈利县| 资源县| 宜阳县| 全州县| 微山县| 镇安县| 五家渠市| 湄潭县| 大丰市| 和平县| 临洮县| 金阳县| 寿宁县| 珠海市| 封开县| 珲春市| 清镇市| 天祝| 绵竹市| 宣化县| 玛沁县| 湘西| 怀化市| 勃利县| 增城市| 常山县| 泉州市| 陇南市| 叙永县| 平乡县| 和田县| 紫金县| 徐闻县| 博乐市| 崇文区|