找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Number Theory and Discrete Mathematics; A. K. Agarwal,Bruce C. Berndt,Michel Waldschmidt Book 2002 Hindustan Book Agency (India) 2002

[復(fù)制鏈接]
樓主: tricuspid-valve
11#
發(fā)表于 2025-3-23 09:56:43 | 只看該作者
12#
發(fā)表于 2025-3-23 15:05:42 | 只看該作者
13#
發(fā)表于 2025-3-23 19:26:51 | 只看該作者
,Integrity of , × ,The vertex Integrity, .(.), of a graph . is defined as. where .(. ? .) is the order of the largest component of . ? .. In this paper, we compute .(. × .), the vertex integrity of the Cartesian product of . and ..
14#
發(fā)表于 2025-3-23 22:21:46 | 只看該作者
15#
發(fā)表于 2025-3-24 05:22:35 | 只看該作者
Transcendental Infinite Sums and Some Related Questions,Erd?s and Chowla put forward some questions regarding non-vanishing of certain infinite sums. In this article, we present an expository account of results obtained in that direction. These include some interesting results of Baker, Birch and Wirsing and some recent work of the present author jointly with Saradha, Shorey and Tijdeman.
16#
發(fā)表于 2025-3-24 07:47:46 | 只看該作者
17#
發(fā)表于 2025-3-24 14:14:05 | 只看該作者
The Problems Solved by Ramanujan in the Journal of the Indian Mathematical Society,Between 1912 and 1914, eight solutions by Ramanujan to questions posed in the . were published. Since these solutions have not heretofore appeared elsewhere, and since some of these problems evidently motivated certain entries in his notebooks [6], in this paper, we present all eight problems and solutions and provide some commentary on them.
18#
發(fā)表于 2025-3-24 16:45:06 | 只看該作者
19#
發(fā)表于 2025-3-24 19:11:08 | 只看該作者
Multiple Polylogarithms: An Introduction,this is the classical polylogarithm Li. (.). These multiple polylogarithms can be defined also in terms of iterated Chen integrals and satisfy .. Multiple polylogarithms in several variables are defined for . ≥ 1 and |.| < 1(1 ≤ . ≤ .) by., and they satisfy not only shuffle relations, but also .. Wh
20#
發(fā)表于 2025-3-25 02:42:17 | 只看該作者
A (Conjectural) 1/3-phenomenon for the Number of Rhombus Tilings of a Hexagon which Contain a Fixedth side lengths 2. + ., 2. + ., 2. + ., 2. + ., 2. + ., 2. + . contains the (horizontal) rhombus with coordinates (2. + ., 2. + .) is equal to ., where .(.) is a rational function in .. Several specific instances of this “1/3-phenomenon” are made explicit.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 01:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
夏邑县| 仁寿县| 房产| 兰西县| 连州市| 阿拉善右旗| 安康市| 六盘水市| 兴城市| 兰西县| 葵青区| 太原市| 慈溪市| 华容县| 江都市| 通城县| 洛浦县| 广宁县| 两当县| 盐津县| 达拉特旗| 高阳县| 无锡市| 宝鸡市| 措美县| 台北市| 楚雄市| 丹东市| 葵青区| 东宁县| 德安县| 新野县| 梨树县| 五莲县| 东兰县| 金山区| 日照市| 漾濞| 新昌县| 奉新县| 绍兴市|