找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Number Theory and Discrete Mathematics; A. K. Agarwal,Bruce C. Berndt,Michel Waldschmidt Book 2002 Hindustan Book Agency (India) 2002

[復(fù)制鏈接]
樓主: tricuspid-valve
11#
發(fā)表于 2025-3-23 09:56:43 | 只看該作者
12#
發(fā)表于 2025-3-23 15:05:42 | 只看該作者
13#
發(fā)表于 2025-3-23 19:26:51 | 只看該作者
,Integrity of , × ,The vertex Integrity, .(.), of a graph . is defined as. where .(. ? .) is the order of the largest component of . ? .. In this paper, we compute .(. × .), the vertex integrity of the Cartesian product of . and ..
14#
發(fā)表于 2025-3-23 22:21:46 | 只看該作者
15#
發(fā)表于 2025-3-24 05:22:35 | 只看該作者
Transcendental Infinite Sums and Some Related Questions,Erd?s and Chowla put forward some questions regarding non-vanishing of certain infinite sums. In this article, we present an expository account of results obtained in that direction. These include some interesting results of Baker, Birch and Wirsing and some recent work of the present author jointly with Saradha, Shorey and Tijdeman.
16#
發(fā)表于 2025-3-24 07:47:46 | 只看該作者
17#
發(fā)表于 2025-3-24 14:14:05 | 只看該作者
The Problems Solved by Ramanujan in the Journal of the Indian Mathematical Society,Between 1912 and 1914, eight solutions by Ramanujan to questions posed in the . were published. Since these solutions have not heretofore appeared elsewhere, and since some of these problems evidently motivated certain entries in his notebooks [6], in this paper, we present all eight problems and solutions and provide some commentary on them.
18#
發(fā)表于 2025-3-24 16:45:06 | 只看該作者
19#
發(fā)表于 2025-3-24 19:11:08 | 只看該作者
Multiple Polylogarithms: An Introduction,this is the classical polylogarithm Li. (.). These multiple polylogarithms can be defined also in terms of iterated Chen integrals and satisfy .. Multiple polylogarithms in several variables are defined for . ≥ 1 and |.| < 1(1 ≤ . ≤ .) by., and they satisfy not only shuffle relations, but also .. Wh
20#
發(fā)表于 2025-3-25 02:42:17 | 只看該作者
A (Conjectural) 1/3-phenomenon for the Number of Rhombus Tilings of a Hexagon which Contain a Fixedth side lengths 2. + ., 2. + ., 2. + ., 2. + ., 2. + ., 2. + . contains the (horizontal) rhombus with coordinates (2. + ., 2. + .) is equal to ., where .(.) is a rational function in .. Several specific instances of this “1/3-phenomenon” are made explicit.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 02:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
广南县| 当涂县| 射洪县| 广州市| 平和县| 济源市| 论坛| 本溪市| 宜州市| 平谷区| 博乐市| 呼图壁县| 阳高县| 林州市| 青浦区| 万盛区| 汉寿县| 临海市| 中宁县| 鲁山县| 雅安市| 南汇区| 岳阳县| 昆明市| 探索| 太谷县| 南乐县| 普宁市| 宣武区| 中西区| 玉门市| 鹤庆县| 吉木萨尔县| 哈密市| 华池县| 宜宾市| 新田县| 新干县| 开原市| 枝江市| 章丘市|