找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Number Theory III; Diophantine Geometry Serge Lang Book 1991 Springer-Verlag Berlin Heidelberg 1991 Abelian varieties.Abelian variety.Dimen

[復(fù)制鏈接]
樓主: inroad
41#
發(fā)表于 2025-3-28 17:04:28 | 只看該作者
42#
發(fā)表于 2025-3-28 19:53:46 | 只看該作者
Heights and Rational Points,e domain. Part of determining the solutions consists in estimating the size of such solutions, in various ways. For instance if . are to be elements of the ring of integers Z, then we can estimate the absolute values |x|, |y| or better the maximum max(|x|, |y|). If x, y are taken to be rational numb
43#
發(fā)表于 2025-3-29 00:35:40 | 只看該作者
Abelian Varieties,c function associated with every divisor class. Furthermore, the group of rational points can be analyzed as a group, with a description of generators, bounds for the heights of generators, a description of the torsion, all emphasizing the group structure. Thus we collect such results in a separate
44#
發(fā)表于 2025-3-29 06:09:18 | 只看該作者
45#
發(fā)表于 2025-3-29 10:00:27 | 只看該作者
Modular Curves Over ,,ic curves with points of order ., or cyclic subgroups of order .. They form the prototype of higher dimensional versions, modular varieties, which parametrize abelian varieties with other structures involving points of finite order. We have already seen the use of such varieties in Faltings’ proof o
46#
發(fā)表于 2025-3-29 13:30:24 | 只看該作者
47#
發(fā)表于 2025-3-29 18:20:07 | 只看該作者
Arakelov Theory,amounted to the corresponding Riemann surfaces and their differential geometric properties once the number field gets imbedded into the complex numbers. Arakelov showed how one could define a global intersection number for two arithmetic curves on an arithmetic surface, and that this intersection nu
48#
發(fā)表于 2025-3-29 22:58:23 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 19:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
金川县| 九龙城区| 故城县| 泌阳县| 镇雄县| 富裕县| 视频| 即墨市| 沧源| 崇左市| 临安市| 贞丰县| 鹤山市| 遂川县| 洪泽县| 红桥区| 黄山市| 南靖县| 新竹县| 万盛区| 岱山县| 老河口市| 绍兴县| 岐山县| 福州市| 永德县| 双牌县| 长武县| 雅安市| 独山县| 龙里县| 锦屏县| 凤山县| 丘北县| 中西区| 澄江县| 会理县| 阳曲县| 威远县| 昭苏县| 观塘区|