找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Number Theory III; Diophantine Geometry Serge Lang Book 1991 Springer-Verlag Berlin Heidelberg 1991 Abelian varieties.Abelian variety.Dimen

[復(fù)制鏈接]
樓主: inroad
41#
發(fā)表于 2025-3-28 17:04:28 | 只看該作者
42#
發(fā)表于 2025-3-28 19:53:46 | 只看該作者
Heights and Rational Points,e domain. Part of determining the solutions consists in estimating the size of such solutions, in various ways. For instance if . are to be elements of the ring of integers Z, then we can estimate the absolute values |x|, |y| or better the maximum max(|x|, |y|). If x, y are taken to be rational numb
43#
發(fā)表于 2025-3-29 00:35:40 | 只看該作者
Abelian Varieties,c function associated with every divisor class. Furthermore, the group of rational points can be analyzed as a group, with a description of generators, bounds for the heights of generators, a description of the torsion, all emphasizing the group structure. Thus we collect such results in a separate
44#
發(fā)表于 2025-3-29 06:09:18 | 只看該作者
45#
發(fā)表于 2025-3-29 10:00:27 | 只看該作者
Modular Curves Over ,,ic curves with points of order ., or cyclic subgroups of order .. They form the prototype of higher dimensional versions, modular varieties, which parametrize abelian varieties with other structures involving points of finite order. We have already seen the use of such varieties in Faltings’ proof o
46#
發(fā)表于 2025-3-29 13:30:24 | 只看該作者
47#
發(fā)表于 2025-3-29 18:20:07 | 只看該作者
Arakelov Theory,amounted to the corresponding Riemann surfaces and their differential geometric properties once the number field gets imbedded into the complex numbers. Arakelov showed how one could define a global intersection number for two arithmetic curves on an arithmetic surface, and that this intersection nu
48#
發(fā)表于 2025-3-29 22:58:23 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 19:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
唐海县| 桂林市| 阜新| 准格尔旗| 体育| 大冶市| 大姚县| 朝阳县| 德惠市| 抚顺县| 汉沽区| 乌拉特后旗| 祥云县| 武陟县| 新晃| 漳平市| 贵阳市| 顺昌县| 喜德县| 望都县| 茂名市| 武强县| 始兴县| 汉阴县| 阳泉市| 阳新县| 陆川县| 南部县| 祁连县| 繁峙县| 东兴市| 沈丘县| 叙永县| 布拖县| 永兴县| 诸城市| 松原市| 买车| 金堂县| 赣州市| 方正县|