找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Number Theory I; Fundamental Problems A. N. Parshin,I. R. Shafarevich Book 19951st edition Springer-Verlag Berlin Heidelberg 1995 Arakelov

[復(fù)制鏈接]
查看: 23107|回復(fù): 36
樓主
發(fā)表于 2025-3-21 19:31:48 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Number Theory I
副標(biāo)題Fundamental Problems
編輯A. N. Parshin,I. R. Shafarevich
視頻videohttp://file.papertrans.cn/669/668864/668864.mp4
概述Covers the most recent results around Fermat‘s Theorem (Andrew Wiles) and the Langlands Conjecture (Lafforgue)
叢書名稱Encyclopaedia of Mathematical Sciences
圖書封面Titlebook: Number Theory I; Fundamental Problems A. N. Parshin,I. R. Shafarevich Book 19951st edition Springer-Verlag Berlin Heidelberg 1995 Arakelov
描述Preface Among the various branches of mathematics, number theory is characterized to a lesser degree by its primary subject ("integers") than by a psychologi- cal attitude. Actually, number theory also deals with rational, algebraic, and transcendental numbers, with some very specific analytic functions (such as Dirichlet series and modular forms), and with some geometric objects (such as lattices and schemes over Z). The question whether a given article belongs to number theory is answered by its author‘s system of values. If arithmetic is not there, the paper will hardly be considered as number-theoretical, even if it deals exclusively with integers and congruences. On the other hand, any mathematical tool, say, homotopy theory or dynamical systems may become an important source of number-theoretical inspiration. For this reason, com- binatorics and the theory of recursive functions are not usually associated with number theory, whereas modular functions are. In this report we interpret number theory broadly. There are compelling reasons to adopt this viewpoint. First of all, the integers constitute (together with geometric images) one of the primary subjects of mathematics in ge
出版日期Book 19951st edition
關(guān)鍵詞Arakelov geometry; Arithmetic der algebraischen Zahlen; Elementare Zahlentheorie; Elementary number the
版次1
doihttps://doi.org/10.1007/978-3-662-08005-4
isbn_ebook978-3-662-08005-4Series ISSN 0938-0396
issn_series 0938-0396
copyrightSpringer-Verlag Berlin Heidelberg 1995
The information of publication is updating

書目名稱Number Theory I影響因子(影響力)




書目名稱Number Theory I影響因子(影響力)學(xué)科排名




書目名稱Number Theory I網(wǎng)絡(luò)公開度




書目名稱Number Theory I網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Number Theory I被引頻次




書目名稱Number Theory I被引頻次學(xué)科排名




書目名稱Number Theory I年度引用




書目名稱Number Theory I年度引用學(xué)科排名




書目名稱Number Theory I讀者反饋




書目名稱Number Theory I讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:41:14 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:41:52 | 只看該作者
地板
發(fā)表于 2025-3-22 04:58:52 | 只看該作者
https://doi.org/10.1007/978-3-662-08005-4Arakelov geometry; Arithmetic der algebraischen Zahlen; Elementare Zahlentheorie; Elementary number the
5#
發(fā)表于 2025-3-22 12:00:53 | 只看該作者
Elementary Number TheoryThe usual decimal notation of natural numbers is a special case of .. An integer . is written to the base . if it is represented in the form.where 0 ≤ .. ≤ . 1. The coefficients .. are called . (or simply digits). Actually, this name is often applied not to the numbers .. but to the special signs chosen to denote these numbers.
6#
發(fā)表于 2025-3-22 13:29:20 | 只看該作者
7#
發(fā)表于 2025-3-22 19:14:24 | 只看該作者
8#
發(fā)表于 2025-3-23 00:47:05 | 只看該作者
9#
發(fā)表于 2025-3-23 03:54:57 | 只看該作者
10#
發(fā)表于 2025-3-23 06:21:07 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 09:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
同仁县| 仙桃市| 昌都县| 泾川县| 乐陵市| 宁晋县| 荆门市| 湖州市| 黑山县| 鹿邑县| 保山市| 广平县| 扶余县| 乐都县| 安泽县| 河津市| 新建县| 富阳市| 南靖县| 永善县| 龙川县| 封开县| 修文县| 北海市| 嘉兴市| 会宁县| 东乡族自治县| 嘉定区| 马边| 汝城县| 石泉县| 大余县| 桑日县| 孝感市| 凤翔县| 漳州市| 慈利县| 兴业县| 浪卡子县| 伽师县| 三门县|