找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Number Theory; New York Seminar 200 David Chudnovsky,Gregory Chudnovsky,Melvyn Nathans Book 2004 Springer-Verlag New York, Inc. 2004 Rieman

[復(fù)制鏈接]
41#
發(fā)表于 2025-3-28 15:00:15 | 只看該作者
42#
發(fā)表于 2025-3-28 19:17:29 | 只看該作者
Continued Fractions and Quadratic Irrationals,ave not achieved a mainstream popularity and are often omitted in courses on number theory. Of course there are reasons for this; their basic construction strikes one as rather bizarre and they are notoriously impossible to manipulate with respect to the usual operations of arithmetic. Furthermore,
43#
發(fā)表于 2025-3-28 23:14:30 | 只看該作者
The inverse problem for representation functions of additive bases,≤ ... The function .. : . → .. ∪ {∞} is the . 2 .. The set . is called an . 2 ..(0) is finite, that is, if every integer with at most a finite number of exceptions can be represented as the sum of two not necessarily distinct elements of .. It is proved that every function is a representation functi
44#
發(fā)表于 2025-3-29 03:08:56 | 只看該作者
On the ubiquity of Sidon sets,for every positive integer ., a ..[.]-set is a set . of integers such that no integer has more than . essentially distinct representation-s as the sum of two elements of .. It is proved that almost all small subsets of {1, 2,…, .} are ..[.]-sets, in the sense that if .. [.](.) denotes the number of
45#
發(fā)表于 2025-3-29 09:51:08 | 只看該作者
46#
發(fā)表于 2025-3-29 12:31:26 | 只看該作者
One Bit World,We want to acknowledge Michael Gerzon of Oxford who had been an early pioneer of one bit audio.
47#
發(fā)表于 2025-3-29 17:52:37 | 只看該作者
48#
發(fā)表于 2025-3-29 20:25:29 | 只看該作者
49#
發(fā)表于 2025-3-30 01:35:01 | 只看該作者
50#
發(fā)表于 2025-3-30 08:07:51 | 只看該作者
,Humbert’s Conic Model and the Kummer Surface,ove theorems of geometry and mechanics. This method is implicit in his earlier applications of Kummer surfaces, for instance his criterion for real multiplication by . uses the special “quarter-period” configuration in the pencil.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 21:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
邵阳市| 柞水县| 惠州市| 芦溪县| 苗栗市| 普陀区| 民丰县| 托克逊县| 图木舒克市| 高尔夫| 沽源县| 富民县| 松原市| 峨眉山市| 临泉县| 和政县| 嘉定区| 青田县| 澜沧| 武陟县| 仙居县| 濉溪县| 龙里县| 乌兰察布市| 高雄市| 太仓市| 自贡市| 武安市| 郸城县| 邵阳县| 文成县| 甘南县| 山东省| 金门县| 鄂托克前旗| 仪征市| 工布江达县| 格尔木市| 莆田市| 青田县| 容城县|