找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Number Theory; Tradition and Modern Wenpeng Zhang,Yoshio Tanigawa Conference proceedings 2006 Springer-Verlag US 2006 Congruences.Exponenti

[復(fù)制鏈接]
樓主: 凝固
11#
發(fā)表于 2025-3-23 12:19:32 | 只看該作者
On Modular forms of Weight (6, + 1)/5 Satisfying a Certain Differential Equation,We study solutions of a differential equation which arose in our previous study of supersingular elliptic curves. By choosing one fifth of an integer κ as the parameter involved in the differential equation, we obtain modular forms of weight . as solutions. It is observed that this solution is also related to supersingular elliptic curves.
12#
發(fā)表于 2025-3-23 15:11:56 | 只看該作者
Analytic Properties of Multiple Zeta-Functions in Several Variables,We report several recent results on analytic properties of multiple zeta-functions, mainly in several variables, such as the analytic continuation, the asymptotic behaviour, the location of singularities, and the recursive structure. Some results presented in this paper have never been published before.
13#
發(fā)表于 2025-3-23 20:56:50 | 只看該作者
Explicit Congruences for Euler Polynomials,In this paper we establish some explicit congruences for Euler polynomials modulo a general positive integer. As a consequence, if . ∈ ? and 2 ? . then . which may be regarded as a refinement of a multiplication formula.
14#
發(fā)表于 2025-3-24 01:06:34 | 只看該作者
15#
發(fā)表于 2025-3-24 06:05:35 | 只看該作者
Wenpeng Zhang,Yoshio TanigawaDeals with various aspects of number theory, with some chapters taking an algorithmic point of view and.some taking a historical perspective.Includes supplementary material:
16#
發(fā)表于 2025-3-24 07:43:46 | 只看該作者
Zeros of Automorphic ,-Functions and Noncyclic Base Change,ntations .,..., . of . (?.), if it is invariant under the Galois action. A technique used in this article is a version of Selberg orthogonality for automorphic .-functions (Lemma 6.2 and Theorem 6.4), which is proved unconditionally, without assuming . and .,..., . being self-contragredient.
17#
發(fā)表于 2025-3-24 13:29:27 | 只看該作者
18#
發(fā)表于 2025-3-24 15:27:18 | 只看該作者
19#
發(fā)表于 2025-3-24 21:10:43 | 只看該作者
20#
發(fā)表于 2025-3-24 23:58:19 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-17 03:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
汾西县| 大名县| 平邑县| 武安市| 普宁市| 宜宾市| 甘德县| 昌黎县| 瑞丽市| 肃宁县| 竹北市| 个旧市| 大安市| 翼城县| 沙坪坝区| 凌海市| 江达县| 海宁市| 顺平县| 江西省| 高邮市| 皮山县| 宁都县| 金秀| 石河子市| 丽水市| 宜良县| 烟台市| 奎屯市| 贵定县| 雷州市| 林口县| 渑池县| 白朗县| 越西县| 无锡市| 班戈县| 斗六市| 庄浪县| 博罗县| 团风县|