找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Number Theory; R. P. Bambah,V. C. Dumir,R. J. Hans-Gill Book 2000 Springer Basel AG 2000 algebra.arithmetic.boundary element method.crypto

[復(fù)制鏈接]
樓主: 浮華
51#
發(fā)表于 2025-3-30 09:31:37 | 只看該作者
52#
發(fā)表于 2025-3-30 14:39:02 | 只看該作者
53#
發(fā)表于 2025-3-30 20:00:29 | 只看該作者
A Centennial History of the Prime Number Theorem,Among the thousands of discoveries made by mathematicians over the centuries, some stand out as significant landmarks. One of these is the ., which describes the asymptotic distribution of prime numbers.
54#
發(fā)表于 2025-3-30 21:51:43 | 只看該作者
On the Oscillation Theorems of Pringsheim and Landau,Our theme is a relation between the sign of a real function and the analytic behaviour of its associated generating function at a special point on the boundary of convergence.
55#
發(fā)表于 2025-3-31 03:00:55 | 只看該作者
The ,-conjecture,In the present paper we give a survey of the .-conjecture and of its modifications and generalizations. We discuss several consequences of the conjecture. At the end of the paper there are given numerical examples giving some evidence for the conjecture.
56#
發(fā)表于 2025-3-31 06:25:50 | 只看該作者
57#
發(fā)表于 2025-3-31 12:33:00 | 只看該作者
58#
發(fā)表于 2025-3-31 16:55:23 | 只看該作者
59#
發(fā)表于 2025-3-31 20:31:42 | 只看該作者
,Artin’s Conjecture for Polynomials Over Finite Fields,A classical conjecture of E. Artin[Ar] predicts that any integer . ≠ ±1 or a perfect square is a primitive root (mod .) for infinitely many primes .. This conjecture is still open. In 1967, Hooley[H] proved the conjecture assuming the (as yet) unresolved generalized Riemann hypothesis for Dedekind zeta functions of certain number fields.
60#
發(fā)表于 2025-4-1 00:16:35 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 07:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
姜堰市| 桦甸市| 广河县| 寿光市| 武胜县| 威远县| 锡林浩特市| 北宁市| 民县| 景泰县| 保定市| 盖州市| 巢湖市| 烟台市| 靖西县| 杂多县| 麟游县| 建阳市| 当阳市| 宣恩县| 嘉义县| 吉林省| 莫力| 江川县| 静乐县| 赫章县| 栾城县| 东阳市| 九寨沟县| 利津县| 酒泉市| 子长县| 乐亭县| 涿州市| 尼玛县| 久治县| 韶山市| 高青县| 汕尾市| 夏邑县| 宣恩县|