找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Number Theory; R. P. Bambah,V. C. Dumir,R. J. Hans-Gill Book 2000 Hindustan Book Agency 2000

[復制鏈接]
樓主: IU421
41#
發(fā)表于 2025-3-28 18:32:30 | 只看該作者
Recent Developments in the Mean Square Theory of the Riemann Zeta and Other Zeta-Functions,spects of the theory of zeta-functions, such as the distribution of zeros, value-distribution, and applications to number theory. Some of them are probably treated in the articles of Professor Apostol and Professor Ramachandra in the present volume.
42#
發(fā)表于 2025-3-28 20:28:16 | 只看該作者
A Centennial History of the Prime Number Theorem,Among the thousands of discoveries made by mathematicians over the centuries, some stand out as significant landmarks. One of these is the ., which describes the asymptotic distribution of prime numbers. It can be stated in various equivalent forms, two of which are: . and
43#
發(fā)表于 2025-3-29 02:13:44 | 只看該作者
44#
發(fā)表于 2025-3-29 03:36:40 | 只看該作者
On Values of Linear and Quadratic Forms at Integral Points,The aim of this article is to give an exposition of certain applications of the study of the homogeneous space .(.)/.(.) and the flows on it induced by subgroups of .(.), to problems on values of linear and quadratic forms at integral points. Also, some complements to Margulis’s theorem on Oppenheim’s conjecture are proved.
45#
發(fā)表于 2025-3-29 08:23:48 | 只看該作者
46#
發(fā)表于 2025-3-29 11:37:58 | 只看該作者
47#
發(fā)表于 2025-3-29 19:05:14 | 只看該作者
,Artin’s Conjecture for Polynomials Over Finite Fields,A classical conjecture of E. Artin[Ar] predicts that any integer . ≠ ±1 or a perfect square is a primitive root (mod .) for infinitely many primes . This conjecture is still open. In 1967, Hooley[H] proved the conjecture assuming the (as yet) unresolved generalized Riemann hypothesis for Dedekind zeta functions of certain number fields.
48#
發(fā)表于 2025-3-29 23:01:23 | 只看該作者
Continuous Homomorphisms as Arithmetical Functions, and Sets of Uniqueness,Let, as usual ?, ?, ?, ?, ? be the set of positive integers, integers, rational, real, and complex numbers, respectively. Let ?., ?. be the multiplicative group of positive rationals, reals, respectively. Let . be the set of prime numbers.
49#
發(fā)表于 2025-3-30 02:34:16 | 只看該作者
50#
發(fā)表于 2025-3-30 05:33:26 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-12 18:52
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
高平市| 湘阴县| 乌兰察布市| 洛隆县| 吴堡县| 北京市| 浏阳市| 巴彦县| 理塘县| 开化县| 微山县| 孟津县| 封开县| 永新县| 淄博市| 青铜峡市| 康乐县| 岚皋县| 抚远县| 肥西县| 思南县| 靖边县| 太康县| 曲沃县| 武鸣县| 郯城县| 临西县| 剑阁县| 淮南市| 宁津县| 延川县| 汝城县| 宿松县| 保康县| 铜山县| 五台县| 东至县| 科技| 沅陵县| 芒康县| 高阳县|