找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Number Theory; R. P. Bambah,V. C. Dumir,R. J. Hans-Gill Book 2000 Hindustan Book Agency 2000

[復制鏈接]
樓主: IU421
41#
發(fā)表于 2025-3-28 18:32:30 | 只看該作者
Recent Developments in the Mean Square Theory of the Riemann Zeta and Other Zeta-Functions,spects of the theory of zeta-functions, such as the distribution of zeros, value-distribution, and applications to number theory. Some of them are probably treated in the articles of Professor Apostol and Professor Ramachandra in the present volume.
42#
發(fā)表于 2025-3-28 20:28:16 | 只看該作者
A Centennial History of the Prime Number Theorem,Among the thousands of discoveries made by mathematicians over the centuries, some stand out as significant landmarks. One of these is the ., which describes the asymptotic distribution of prime numbers. It can be stated in various equivalent forms, two of which are: . and
43#
發(fā)表于 2025-3-29 02:13:44 | 只看該作者
44#
發(fā)表于 2025-3-29 03:36:40 | 只看該作者
On Values of Linear and Quadratic Forms at Integral Points,The aim of this article is to give an exposition of certain applications of the study of the homogeneous space .(.)/.(.) and the flows on it induced by subgroups of .(.), to problems on values of linear and quadratic forms at integral points. Also, some complements to Margulis’s theorem on Oppenheim’s conjecture are proved.
45#
發(fā)表于 2025-3-29 08:23:48 | 只看該作者
46#
發(fā)表于 2025-3-29 11:37:58 | 只看該作者
47#
發(fā)表于 2025-3-29 19:05:14 | 只看該作者
,Artin’s Conjecture for Polynomials Over Finite Fields,A classical conjecture of E. Artin[Ar] predicts that any integer . ≠ ±1 or a perfect square is a primitive root (mod .) for infinitely many primes . This conjecture is still open. In 1967, Hooley[H] proved the conjecture assuming the (as yet) unresolved generalized Riemann hypothesis for Dedekind zeta functions of certain number fields.
48#
發(fā)表于 2025-3-29 23:01:23 | 只看該作者
Continuous Homomorphisms as Arithmetical Functions, and Sets of Uniqueness,Let, as usual ?, ?, ?, ?, ? be the set of positive integers, integers, rational, real, and complex numbers, respectively. Let ?., ?. be the multiplicative group of positive rationals, reals, respectively. Let . be the set of prime numbers.
49#
發(fā)表于 2025-3-30 02:34:16 | 只看該作者
50#
發(fā)表于 2025-3-30 05:33:26 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-12 18:52
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
滨海县| 马鞍山市| 巨鹿县| 黄龙县| 新建县| 社会| 罗江县| 启东市| 淮北市| 锦屏县| 新闻| 云林县| 盐津县| 桐城市| 呈贡县| 乌兰察布市| 绥阳县| 清水县| 保德县| 富蕴县| 南汇区| 三台县| 马边| 满洲里市| 边坝县| 松桃| 司法| 伊金霍洛旗| 江山市| 仪陇县| 光泽县| 台中县| 修文县| 铜山县| 平遥县| 昂仁县| 海门市| 江阴市| 桐庐县| 辽阳县| 上林县|