找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Number Theoretic Methods in Cryptography; Complexity lower bou Igor Shparlinski Book 1999 Springer Basel AG 1999 complexity.complexity theo

[復(fù)制鏈接]
樓主: 貶損
31#
發(fā)表于 2025-3-26 21:35:08 | 只看該作者
Approximation of the Discrete Logarithm Modulo Here we show that polynomials and algebraic functions approximating the discrete logarithm modulo . on sufficiently large sets must be of sufficiently large degree, in fact exponentially large (in terms of log.). Many of the results of this chapter can also be found in [48]. We start with a rather simple statement.
32#
發(fā)表于 2025-3-27 03:23:23 | 只看該作者
Approximation of the Discrete Logarithm Modulo , - 1In this chapter we consider various approximations and representations of the discrete logarithm modulo a divisor . of . - 1. Certainly the case of . = 2 is of special interest because it corresponds to representation of the rightmost bit of ind ..
33#
發(fā)表于 2025-3-27 09:14:10 | 只看該作者
Approximation of the Discrete Logarithm by Boolean FunctionsHere we consider the bitwise approximation of the discrete logarithm given the bit representation of the argument. Moreover, we concentrate on the rightmost bit of ind .. This question is essentially equivalent to deciding quadratic residuacity of ..
34#
發(fā)表于 2025-3-27 13:31:47 | 只看該作者
Approximation of the Discrete Logarithm by Real and Complex PolynomialsHere we consider some questions about approximation of the discrete logarithm by real and even complex polynomials. Unfortunately our results are weaker that those in our previous settings.
35#
發(fā)表于 2025-3-27 15:33:58 | 只看該作者
36#
發(fā)表于 2025-3-27 18:11:58 | 只看該作者
Special Polynomials and Boolean FunctionsIn this chapter we show how to apply the techniques of this book to various questions about permutation polynomials, powers ., Zech’s logarithm, primitive root testing and symmetric Boolean functions.
37#
發(fā)表于 2025-3-27 23:40:17 | 只看該作者
RSA and Blum—Blum—Shub Generators of Pseudo-Random NumbersLet ?, . and . be integers such that gcd(?, .) = 1.
38#
發(fā)表于 2025-3-28 06:09:39 | 只看該作者
Further DirectionsWe now try very briefly to describe several other problems which look quite unrelated to the questions considered in this book (in particular, they are not directly related to any functions over a finite field), but for which, nevertheless, we hope our approach could turn out to be useful.
39#
發(fā)表于 2025-3-28 08:02:03 | 只看該作者
978-3-0348-9723-5Springer Basel AG 1999
40#
發(fā)表于 2025-3-28 13:25:20 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 00:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
合阳县| 太白县| 镇远县| 瑞昌市| 雅安市| 威宁| 鹿邑县| 临漳县| 琼结县| 宣武区| 老河口市| 五原县| 开阳县| 玛多县| 那曲县| 子长县| 清新县| 通许县| 赣榆县| 长兴县| 民和| 三门峡市| 灌南县| 平果县| 景东| 新宁县| 大宁县| 布尔津县| 孟津县| 仙桃市| 平罗县| 兴和县| 达拉特旗| 上犹县| 大方县| 冷水江市| 漯河市| 利川市| 五大连池市| 翁牛特旗| 漯河市|