找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Notwendige Optimalit?tsbedingungen und ihre Anwendung; Andreas Kirsch,Wolfgang Warth,Jochen Werner Book 1978 Springer-Verlag Berlin Heidel

[復(fù)制鏈接]
樓主: intern
31#
發(fā)表于 2025-3-26 22:27:26 | 只看該作者
32#
發(fā)表于 2025-3-27 05:00:39 | 只看該作者
Notwendige Optimalit?tsbedingungen bei diskreten optimalen Steuerungsproblemenproblemen i.a. kein globales PONTRYAGIN’ sches Maximumprinzip zu erwarten ist (siehe [7]), sondern das lokale Maximumprinzip nur unter Konvexit?tsbedingungen zu einem globalen Maximumprinzip erweitert werden kann.
33#
發(fā)表于 2025-3-27 07:51:19 | 只看該作者
34#
發(fā)表于 2025-3-27 12:24:17 | 只看該作者
Konvexe OptimierungsaufgabenIn diesem Paragraphen wollen wir eine erste Spezialisierung der in §2 gewonnenen Ergebnisse vornehmen. Wir betrachten jetzt konvexe Optimierungsaufgaben der folgenden Form:
35#
發(fā)表于 2025-3-27 16:16:57 | 只看該作者
Das Maximumprinzip für differenzierbare FunktionenIn diesem Paragraphen wollen wir zeigen, wie sich “klassische” Maximumprinzipien als Spezialf?lle von Satz 2.3 und Satz 2.4 ergeben. Hierfür ist es notwendig, die Zusammenh?nge zwischen unserem und anderen Differenzierbarkeitsbegriffen aufzuzeigen.
36#
發(fā)表于 2025-3-27 21:13:44 | 只看該作者
Notwendige Optimalit?tsbedingungen bei optimalen SteuerungsproblemenZun?chst wollen wir versuchen, mehr verbal als mathematisch-exakt zu erkl?ren, was ein optimales Steuerungsproblem ist.
37#
發(fā)表于 2025-3-28 00:36:04 | 只看該作者
38#
發(fā)表于 2025-3-28 03:30:55 | 只看該作者
Einleitung L?sung einer gegebenen Optimierungsaufgabe notwendig zu genügen hat. Bei konkreten Fragestellungen hofft man, mit Hilfe dieser notwendigen Optimalit?tsbedingungen Aussagen zu gewinnen, die zu einer Berechnung m?glicher L?sungen ausgenutzt werden k?nnen.
39#
發(fā)表于 2025-3-28 08:01:13 | 只看該作者
40#
發(fā)表于 2025-3-28 11:18:56 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 03:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
呼图壁县| 宕昌县| 武强县| 隆化县| 大姚县| 丰宁| 华阴市| 雷州市| 兖州市| 株洲县| 彭水| 万年县| 张掖市| 夏邑县| 方正县| 巴楚县| 仪征市| 天水市| 鸡西市| 永修县| 益阳市| 大厂| 乌恰县| 东辽县| 文登市| 自治县| 岳普湖县| 衡阳市| 江津市| 石嘴山市| 分宜县| 怀集县| 循化| 旺苍县| 金川县| 九龙城区| 腾冲县| 喜德县| 广汉市| 阳江市| 东方市|