找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Notwendige Optimalit?tsbedingungen und ihre Anwendung; Andreas Kirsch,Wolfgang Warth,Jochen Werner Book 1978 Springer-Verlag Berlin Heidel

[復(fù)制鏈接]
樓主: intern
31#
發(fā)表于 2025-3-26 22:27:26 | 只看該作者
32#
發(fā)表于 2025-3-27 05:00:39 | 只看該作者
Notwendige Optimalit?tsbedingungen bei diskreten optimalen Steuerungsproblemenproblemen i.a. kein globales PONTRYAGIN’ sches Maximumprinzip zu erwarten ist (siehe [7]), sondern das lokale Maximumprinzip nur unter Konvexit?tsbedingungen zu einem globalen Maximumprinzip erweitert werden kann.
33#
發(fā)表于 2025-3-27 07:51:19 | 只看該作者
34#
發(fā)表于 2025-3-27 12:24:17 | 只看該作者
Konvexe OptimierungsaufgabenIn diesem Paragraphen wollen wir eine erste Spezialisierung der in §2 gewonnenen Ergebnisse vornehmen. Wir betrachten jetzt konvexe Optimierungsaufgaben der folgenden Form:
35#
發(fā)表于 2025-3-27 16:16:57 | 只看該作者
Das Maximumprinzip für differenzierbare FunktionenIn diesem Paragraphen wollen wir zeigen, wie sich “klassische” Maximumprinzipien als Spezialf?lle von Satz 2.3 und Satz 2.4 ergeben. Hierfür ist es notwendig, die Zusammenh?nge zwischen unserem und anderen Differenzierbarkeitsbegriffen aufzuzeigen.
36#
發(fā)表于 2025-3-27 21:13:44 | 只看該作者
Notwendige Optimalit?tsbedingungen bei optimalen SteuerungsproblemenZun?chst wollen wir versuchen, mehr verbal als mathematisch-exakt zu erkl?ren, was ein optimales Steuerungsproblem ist.
37#
發(fā)表于 2025-3-28 00:36:04 | 只看該作者
38#
發(fā)表于 2025-3-28 03:30:55 | 只看該作者
Einleitung L?sung einer gegebenen Optimierungsaufgabe notwendig zu genügen hat. Bei konkreten Fragestellungen hofft man, mit Hilfe dieser notwendigen Optimalit?tsbedingungen Aussagen zu gewinnen, die zu einer Berechnung m?glicher L?sungen ausgenutzt werden k?nnen.
39#
發(fā)表于 2025-3-28 08:01:13 | 只看該作者
40#
發(fā)表于 2025-3-28 11:18:56 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 04:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
锦屏县| 紫阳县| 合山市| 治多县| 嘉鱼县| 昂仁县| 花垣县| 高碑店市| 桓仁| 枣阳市| 大名县| 昔阳县| 高青县| 靖州| 高阳县| 杭锦后旗| 来凤县| 宜都市| 南岸区| 得荣县| 威宁| 遂溪县| 鸡西市| 新疆| 新干县| 泉州市| 芜湖县| 麦盖提县| 铁力市| 根河市| 遵化市| 永兴县| 湘乡市| 磐石市| 墨脱县| 客服| 霞浦县| 井研县| 大名县| 娄烦县| 抚顺市|