找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Notes on Functional Analysis; Rajendra Bhatia Book 2009 Hindustan Book Agency (India) 2009

[復(fù)制鏈接]
樓主: CT951
11#
發(fā)表于 2025-3-23 12:28:22 | 只看該作者
12#
發(fā)表于 2025-3-23 17:30:10 | 只看該作者
13#
發(fā)表于 2025-3-23 21:01:02 | 只看該作者
Some Special Operators in Hilbert Space,The additional structure in a Hilbert space and its self-duality make the adjoint operation especially interesting. All Hilbert spaces that we consider are over complex scalars except when we say otherwise.
14#
發(fā)表于 2025-3-24 00:44:21 | 只看該作者
15#
發(fā)表于 2025-3-24 05:07:12 | 只看該作者
The Weak Topology,uniformly. There are other notions of convergence that are weaker, and still very useful in analysis. This is the motivation for studying different topologies on spaces of functions, and on general Banach spaces.
16#
發(fā)表于 2025-3-24 06:47:18 | 只看該作者
17#
發(fā)表于 2025-3-24 13:23:52 | 只看該作者
The Resolvent and The Spectrum,lues of .. In infinite dimensions there are complications that arise from the fact that an operator could fail to be invertible in different ways. Finding the spectrum is not an easy problem even in the finite-dimensional case; it is much more difficult in infinite dimensions.
18#
發(fā)表于 2025-3-24 15:22:55 | 只看該作者
Subdivision of the Spectrum,eigenvalue. The adjoint of . is the left shift operator . on the space ?.. If λ is any complex number with |λ| ≤ 1, then the vector . = (1, λ, λ.,…) is in ?. and . = λ.. Thus . point λ in the disk . is an eigenvalue of .. This shows also that .(.) = .(.) = ..
19#
發(fā)表于 2025-3-24 22:08:17 | 只看該作者
Hindustan Book Agency (India) 2009
20#
發(fā)表于 2025-3-24 23:28:39 | 只看該作者
Texts and Readings in Mathematicshttp://image.papertrans.cn/n/image/668252.jpg
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 12:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
湄潭县| 湟源县| 万安县| 含山县| 阜康市| 肥乡县| 博客| 炎陵县| 邳州市| 双桥区| 桐乡市| 航空| 宜黄县| 襄樊市| 都江堰市| 泰州市| 青铜峡市| 宜都市| 昭觉县| 台中县| 永安市| 河东区| 成安县| 漾濞| 龙陵县| 佛坪县| 社会| 临夏县| 府谷县| 安宁市| 肃南| 丹巴县| 水富县| 安仁县| 唐河县| 靖西县| 襄汾县| 兖州市| 西宁市| 太和县| 永和县|