找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Normal Forms and Stability of Hamiltonian Systems; Hildeberto E. Cabral,Lúcia Brand?o Dias Textbook 2023 The Editor(s) (if applicable) and

[復(fù)制鏈接]
樓主: ACID
11#
發(fā)表于 2025-3-23 12:57:57 | 只看該作者
Hildeberto E. Cabral,Lúcia Brand?o Diastch, Chinese, Australian, Indian and European examples. Part I: General Theory offers a detailed overview of the charrette process, a chapter on innovations in organizational and community learning and a chapter on shifting paradigms in the design charrette. Part II presents a number of case studies
12#
發(fā)表于 2025-3-23 13:55:59 | 只看該作者
13#
發(fā)表于 2025-3-23 20:15:22 | 只看該作者
Preliminaries on Advanced Calculus,In this book we use the approach of the intrinsic differential calculus, which frequently saves time, space and gives clarity to the presentation. Therefore, we recall some facts from Advanced Calculus. For more details the reader can consult any text on Advanced Calculus, for instance the books by Goffman, Loomis-Sternberg or Rudin.
14#
發(fā)表于 2025-3-23 22:17:11 | 只看該作者
15#
發(fā)表于 2025-3-24 05:55:08 | 只看該作者
Spectral Decomposition of Hamiltonian Matrices,In this chapter we study the normal form of a Hamiltonian matrix when the matrix is diagonalizable. For multiple eigenvalues we give the normal form only when the eigenvalues are purely imaginary numbers, the case relevant to the study of stability.
16#
發(fā)表于 2025-3-24 07:25:55 | 只看該作者
Stability of Equilibria,In Sect. . we defined the stability of an equilibrium of an autonomous ordinary differential equation . and stated some stability results. Now we consider again this question but also include the case of a non-autonomous differential equation.
17#
發(fā)表于 2025-3-24 13:19:11 | 只看該作者
18#
發(fā)表于 2025-3-24 16:03:31 | 只看該作者
19#
發(fā)表于 2025-3-24 20:29:20 | 只看該作者
978-3-031-33048-3The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
20#
發(fā)表于 2025-3-24 23:46:02 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 11:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南宁市| 泊头市| 昌宁县| 化隆| 曲麻莱县| 墨玉县| 昌宁县| 台北市| 府谷县| 辽阳县| 商丘市| 天峨县| 防城港市| 湟源县| 宜兰市| 安康市| 大荔县| 晋州市| 章丘市| 榆树市| 邯郸县| 凤城市| 元江| 武城县| 鹤山市| 北流市| 衡阳县| 防城港市| 兴业县| 东城区| 黄大仙区| 阜新市| 十堰市| 准格尔旗| 湖北省| 灵台县| 康平县| 永新县| 金昌市| 湾仔区| 太谷县|